搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用激光冷却原子束测量氦原子精密光谱

孙羽 冯高平 程存峰 涂乐义 潘虎 杨国民 胡水明

利用激光冷却原子束测量氦原子精密光谱

孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明
PDF
导出引用
导出核心图
  • 4He原子23S123P0,1,2跃迁的精细结构分裂,目前在理论和实验上都能够达到10-8水平的精度,并可被应用于测定精细结构常数, 和对量子电动力学进行检验.该方面实验研究的关键, 是需要提高测量信噪比,并消除各种可能的系统偏差, 将这一精细结构分裂测量到亚kHz水平.在设计的这套实验方案中, 首次结合激光冷却原子技术,通过激光横向冷却来提高亚稳态氦原子束的束流强度,并对三态亚稳态氦原子进行偏折, 将其从原子束中分离,从而大幅降低测量背景,并利用频率锁定激光器的边带扫描的方式来进行光谱测量,以使得扫描测量中保持足够的频率精度. 在目前基本搭建成的实验装置上,实验方法的可行性已经获得验证,分析表明有望实现亚千赫兹水平的测量准确度.
    • 基金项目: 国家自然科学基金(批准号: 90921006)资助的课题.
    [1]

    Hylleraas E A 1929 Z. Phys. 54 347

    [2]

    Kinoshita T 1957 Phys. Rev. 105 1490

    [3]

    Schwartz C 1964 Phys. Rev. 134 A1181

    [4]

    Frankowski K, Pekeris C L 1966 Phys. Rev. 146 46

    [5]

    Goldman S P 1998 Phys. Rev. A 57 R677

    [6]

    Korobov V I 2002 Phys. Rev. A 66 024501

    [7]

    Schwartz C 2006 Int. J. Mod. Phys. E 15 877

    [8]

    Liu Y X, Zhao Z H, Wang Y Q, Chen Y H 2005 Acta Phys. Sin. 54 2620 (in Chinese) [刘玉孝, 赵振华, 王永强, 陈玉红 2005 物理学报 54 2620]

    [9]

    Drake G W F 1993 Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems (New York: Plenum Press) p107

    [10]

    Lewis M L, Serafino P H 1978 Phys. Rev. A 18 867

    [11]

    Kponou A, Hughes V W, Johnson C E, Lewis S A, Pichanick F M J 1971 Phys. Rev. Lett. 26 1613

    [12]

    Zhang T, Yan Z C, Drake G W F 1996 Phys. Rev. Lett. 77 1715

    [13]

    Drake G W F 2002 Can. J. Phys. 80 1195

    [14]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002

    [15]

    Pachuchi K, Yerokhin V A 2009 Phys. Rev. A 79 062516

    [16]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [17]

    Lamb W E 1957 Phys. Rev. 105 559

    [18]

    Colegrove F D, Franken P A, Lewis R R, Sands R H 1959 Phys. Rev. Lett. 3 420

    [19]

    Pichanick F M J, Swift R D, Johnson C E, Hughes V E. 1968 Phys. Rev. 169 55

    [20]

    Lewis S A, Pichanick F M J, Hughes V W 1970 Phys. Rev. A 2 86

    [21]

    Storry C H, George M C, Hessels E A 2000 Phys. Rev. Lett. 84 3274

    [22]

    George M C, Lombardi L D, Hessel E A 2001 Phys. Rev. Lett. 87 173002

    [23]

    Borbely J S, George M C, Lombardi L D, Weel M, Fitzakerley D W, Hessels E A 2009 Phys. Rev. A 79 060503

    [24]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321

    [25]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001

    [26]

    Giusfredi G, Pastor P C, De Natale P, Mazzotti D, De Mauro C, Fallani L, Hagel G, Krachmalnicoff V, Inguscio M 2005 Can. J. Phys. 83 301

    [27]

    Zelevinsky T, Farkas D, Gabrielse G 2005 Phys. Rev. Lett. 95 203001

    [28]

    Hu S M, Lu Z T, Yan Z C 2009 Front. Phys. China 4 165

    [29]

    Petrasso R, Ramsey A T 1972 Phys. Rev. A 5 79

    [30]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106

    [31]

    Cheng C F, Yang G M, Jiang W, Pan H, Sun Y, Liu A W, Cheng G S, Hu S M 2011 Acta Phys. Sin. 60 103701 (in Chinese) [程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明 2011 物理学报 60 103701]

    [32]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [33]

    Salomon C, Hils D, Hall J L 1988 J. Opt. Soc. Am. B 5 1576

    [34]

    Jacobs S F 1986 Opt. Acta 33 1377

    [35]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980

    [36]

    Zhao Y Z, Sun H Y, Song F H, Tang L M, Wu W W, Zhang X, Guo H C 2008 Acta Phys. Sin. 57 2284 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 唐黎明, 吴伟伟, 张 曦, 郭惠超 2008 物理学报 57 2284]

    [37]

    Snyder J J 1975 Appl. Opt. 14 1825

  • [1]

    Hylleraas E A 1929 Z. Phys. 54 347

    [2]

    Kinoshita T 1957 Phys. Rev. 105 1490

    [3]

    Schwartz C 1964 Phys. Rev. 134 A1181

    [4]

    Frankowski K, Pekeris C L 1966 Phys. Rev. 146 46

    [5]

    Goldman S P 1998 Phys. Rev. A 57 R677

    [6]

    Korobov V I 2002 Phys. Rev. A 66 024501

    [7]

    Schwartz C 2006 Int. J. Mod. Phys. E 15 877

    [8]

    Liu Y X, Zhao Z H, Wang Y Q, Chen Y H 2005 Acta Phys. Sin. 54 2620 (in Chinese) [刘玉孝, 赵振华, 王永强, 陈玉红 2005 物理学报 54 2620]

    [9]

    Drake G W F 1993 Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems (New York: Plenum Press) p107

    [10]

    Lewis M L, Serafino P H 1978 Phys. Rev. A 18 867

    [11]

    Kponou A, Hughes V W, Johnson C E, Lewis S A, Pichanick F M J 1971 Phys. Rev. Lett. 26 1613

    [12]

    Zhang T, Yan Z C, Drake G W F 1996 Phys. Rev. Lett. 77 1715

    [13]

    Drake G W F 2002 Can. J. Phys. 80 1195

    [14]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002

    [15]

    Pachuchi K, Yerokhin V A 2009 Phys. Rev. A 79 062516

    [16]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [17]

    Lamb W E 1957 Phys. Rev. 105 559

    [18]

    Colegrove F D, Franken P A, Lewis R R, Sands R H 1959 Phys. Rev. Lett. 3 420

    [19]

    Pichanick F M J, Swift R D, Johnson C E, Hughes V E. 1968 Phys. Rev. 169 55

    [20]

    Lewis S A, Pichanick F M J, Hughes V W 1970 Phys. Rev. A 2 86

    [21]

    Storry C H, George M C, Hessels E A 2000 Phys. Rev. Lett. 84 3274

    [22]

    George M C, Lombardi L D, Hessel E A 2001 Phys. Rev. Lett. 87 173002

    [23]

    Borbely J S, George M C, Lombardi L D, Weel M, Fitzakerley D W, Hessels E A 2009 Phys. Rev. A 79 060503

    [24]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321

    [25]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001

    [26]

    Giusfredi G, Pastor P C, De Natale P, Mazzotti D, De Mauro C, Fallani L, Hagel G, Krachmalnicoff V, Inguscio M 2005 Can. J. Phys. 83 301

    [27]

    Zelevinsky T, Farkas D, Gabrielse G 2005 Phys. Rev. Lett. 95 203001

    [28]

    Hu S M, Lu Z T, Yan Z C 2009 Front. Phys. China 4 165

    [29]

    Petrasso R, Ramsey A T 1972 Phys. Rev. A 5 79

    [30]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106

    [31]

    Cheng C F, Yang G M, Jiang W, Pan H, Sun Y, Liu A W, Cheng G S, Hu S M 2011 Acta Phys. Sin. 60 103701 (in Chinese) [程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明 2011 物理学报 60 103701]

    [32]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [33]

    Salomon C, Hils D, Hall J L 1988 J. Opt. Soc. Am. B 5 1576

    [34]

    Jacobs S F 1986 Opt. Acta 33 1377

    [35]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980

    [36]

    Zhao Y Z, Sun H Y, Song F H, Tang L M, Wu W W, Zhang X, Guo H C 2008 Acta Phys. Sin. 57 2284 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 唐黎明, 吴伟伟, 张 曦, 郭惠超 2008 物理学报 57 2284]

    [37]

    Snyder J J 1975 Appl. Opt. 14 1825

  • [1] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [2] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [3] 朱云霞, 贺黎明, 曹 伟, 葛自明. 氦原子Rydberg态10G—10M磁精细结构的计算. 物理学报, 2005, 54(11): 5082-5088. doi: 10.7498/aps.54.5082
    [4] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [5] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [6] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化. 物理学报, 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [7] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获. 物理学报, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [8] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用. 物理学报, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [9] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [10] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [11] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究. 物理学报, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [12] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究. 物理学报, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [13] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究. 物理学报, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [14] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正. 物理学报, 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [15] 贺黎明, 曹 伟, 陈学谦, 朱云霞. 氦原子1snd(n=4—11)组态下1D—3D谱项分裂值的计算. 物理学报, 2005, 54(11): 5077-5081. doi: 10.7498/aps.54.5077
    [16] 吴晓丽, 苟秉聪, 刘义东. 氦原子单激发和双激发态里德伯系列的相对论能量计算. 物理学报, 2004, 53(1): 48-53. doi: 10.7498/aps.53.48
    [17] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案 . 物理学报, 2012, 61(22): 223701. doi: 10.7498/aps.61.223701
    [18] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究. 物理学报, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [19] 闫海青, 唐 晨, 张 皞, 刘 铭, 张桂敏. 半导体束缚激子基态能的变尺度法. 物理学报, 2004, 53(11): 3877-3881. doi: 10.7498/aps.53.3877
    [20] 林尊琪, 谭维翰, 顾敏, 梅广, 潘成明, 余文炎, 邓锡铭. 激光平面靶3ω0/2谐波空间精细结构的时间和光谱特性. 物理学报, 1986, 35(4): 459-466. doi: 10.7498/aps.35.459
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1931
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-07
  • 修回日期:  2012-02-28
  • 刊出日期:  2012-09-05

利用激光冷却原子束测量氦原子精密光谱

  • 1. 中国科学技术大学, 合肥微尺度物质科学国家实验室, 合肥 230026
    基金项目: 

    国家自然科学基金(批准号: 90921006)资助的课题.

摘要: 4He原子23S123P0,1,2跃迁的精细结构分裂,目前在理论和实验上都能够达到10-8水平的精度,并可被应用于测定精细结构常数, 和对量子电动力学进行检验.该方面实验研究的关键, 是需要提高测量信噪比,并消除各种可能的系统偏差, 将这一精细结构分裂测量到亚kHz水平.在设计的这套实验方案中, 首次结合激光冷却原子技术,通过激光横向冷却来提高亚稳态氦原子束的束流强度,并对三态亚稳态氦原子进行偏折, 将其从原子束中分离,从而大幅降低测量背景,并利用频率锁定激光器的边带扫描的方式来进行光谱测量,以使得扫描测量中保持足够的频率精度. 在目前基本搭建成的实验装置上,实验方法的可行性已经获得验证,分析表明有望实现亚千赫兹水平的测量准确度.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回