搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合气体声复合弛豫频谱的解析模型

张克声 王殊 朱明 胡轶 贾雅琼

混合气体声复合弛豫频谱的解析模型

张克声, 王殊, 朱明, 胡轶, 贾雅琼
PDF
导出引用
导出核心图
  • 为研究声传播和分子多模式振动能量弛豫的相互关系,本文提出了一种混合气体声 复合弛豫频谱的解析模型.该模型从振动模式微观能量转移及其耦合形成宏观弛豫过程两个角度, 分析了依赖于声频率的混合气体有效热容.并通过求解振动模式能量转移的通用弛豫方程, 最终得到可同时体现主副弛豫过程的声弛豫吸收和声频散的解析结果.仿真结果表明, 对于CO2, CH4, N2和O2组成的多种混合气体, 该模型的声吸收谱与实验数据相符,峰值误差在1%以内,且反映了多振动模式形成的 声复合弛豫吸收谱上通常仅会显现1-2个吸收波峰的物理现象.与已有模型相比, 本解析模型可直接求出混合气体声弛豫频谱上特征点的解析形式,并利于对其进行定性定量分析. 从而为研究声传播特性与气体分子弛豫特性的相互关系提供了一个有效理论模型.
    • 基金项目: 国家自然科学基金(批准号: 60971009, 61001011);高等学校博士学科点专项科研基金 (批准号: 20090142110019);湖北省自然科学基金(批准号: 2010CDB02701)和中央高校基本科研业务费 专项资金(批准号: 2012QN083)资助的课题.
    [1]

    Petculescu A G, Lueptow R M 2007 Icarus 186 413

    [2]

    Bass H E, Chambers J P 2001 J. Acoust. Soc. Am. 109 3069

    [3]

    Phillips S, Dain Y, Lueptow R M 2003 Meas. Sci. Technol. 14 70

    [4]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phys. Sin. 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [5]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic) p55-216

    [6]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon) p1-114

    [7]

    Lueptow R M, Phillips S 1994 Meas. Sci. Technol. 5 1375

    [8]

    Herzfeld K F, Rice F O 1928 phys. rev. 31 691

    [9]

    Knudsen V O 1931 J. Acoust. Soc. Am. 3 126

    [10]

    Bauer H J, Shields F D, Bass H E 1972 J. Chem. Phys. 57 4624

    [11]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [12]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [13]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [14]

    Evans L B, Bass H E, Sutherland L C 1972 J. Acoust. Soc. Am. 51 1565

    [15]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L 1984 Absorption of Sound by the Atmosphere in Physical Acoustics edited by Mason W P, Thurston R N (Vol. XVII) (Orlando: Academic) p145-232

    [17]

    Sutherland L C, Bass H E 2004 J. Acoust. Soc. Am. 115 1012

    [18]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [19]

    Petculescu A G, Lueptow R M 2005 J. Acoust. Soc. Am. 117 175

    [20]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [21]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [22]

    Zhang H L 2007 Theoretical acoustics (Beijing: Higher Education Press) p221 (in Chinese) [张海澜 2007 理论声学(北京:高等教育出版社) 第221页]

    [23]

    Zhang J C, Yuan P, Ouyang Y H 2010 Acta Phys. Sin. 59 8287 (in Chinese) [张景川, 袁萍, 欧阳玉花 2010 物理学报 59 8287]

    [24]

    Morse P M, Ingard K U 1968 Theoretical acoustics (New York: McGraw-Hill) p294-300

    [25]

    Holman J P 1980 Thermodynamics (New York: McGraw-Hill) p324-332

    [26]

    Gravitt J C, Whetstone C N, Lagemann R T 1966 J. Chem. Phys. 44 70

    [27]

    Yardley J T, Moore C B 1968 J. Chem. Phys. 49 1111

    [28]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acoust. Soc. Am. 120 1779

    [29]

    Yan S, Wang S 2008 Acta Phys. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

  • [1]

    Petculescu A G, Lueptow R M 2007 Icarus 186 413

    [2]

    Bass H E, Chambers J P 2001 J. Acoust. Soc. Am. 109 3069

    [3]

    Phillips S, Dain Y, Lueptow R M 2003 Meas. Sci. Technol. 14 70

    [4]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phys. Sin. 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [5]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic) p55-216

    [6]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon) p1-114

    [7]

    Lueptow R M, Phillips S 1994 Meas. Sci. Technol. 5 1375

    [8]

    Herzfeld K F, Rice F O 1928 phys. rev. 31 691

    [9]

    Knudsen V O 1931 J. Acoust. Soc. Am. 3 126

    [10]

    Bauer H J, Shields F D, Bass H E 1972 J. Chem. Phys. 57 4624

    [11]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [12]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [13]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [14]

    Evans L B, Bass H E, Sutherland L C 1972 J. Acoust. Soc. Am. 51 1565

    [15]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L 1984 Absorption of Sound by the Atmosphere in Physical Acoustics edited by Mason W P, Thurston R N (Vol. XVII) (Orlando: Academic) p145-232

    [17]

    Sutherland L C, Bass H E 2004 J. Acoust. Soc. Am. 115 1012

    [18]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [19]

    Petculescu A G, Lueptow R M 2005 J. Acoust. Soc. Am. 117 175

    [20]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [21]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [22]

    Zhang H L 2007 Theoretical acoustics (Beijing: Higher Education Press) p221 (in Chinese) [张海澜 2007 理论声学(北京:高等教育出版社) 第221页]

    [23]

    Zhang J C, Yuan P, Ouyang Y H 2010 Acta Phys. Sin. 59 8287 (in Chinese) [张景川, 袁萍, 欧阳玉花 2010 物理学报 59 8287]

    [24]

    Morse P M, Ingard K U 1968 Theoretical acoustics (New York: McGraw-Hill) p294-300

    [25]

    Holman J P 1980 Thermodynamics (New York: McGraw-Hill) p324-332

    [26]

    Gravitt J C, Whetstone C N, Lagemann R T 1966 J. Chem. Phys. 44 70

    [27]

    Yardley J T, Moore C B 1968 J. Chem. Phys. 49 1111

    [28]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acoust. Soc. Am. 120 1779

    [29]

    Yan S, Wang S 2008 Acta Phys. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

  • [1] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [2] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [3] 李宏成. 有效声子谱对超导体临界温度的影响. 物理学报, 1979, 164(1): 104-116. doi: 10.7498/aps.28.104
    [4] 钱祖文. 化学反应媒质中的声吸收理论及关于MgSO4水溶液的弛豫机构. 物理学报, 1962, 79(10): 501-508. doi: 10.7498/aps.18.501
    [5] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究. 物理学报, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [6] 翁征宇, 吴杭生. 归一有效声子谱谱形对超导临界温度Tc的影响. 物理学报, 1988, 37(2): 239-247. doi: 10.7498/aps.37.239
    [7] 张向群, 王殊, 朱明. 常温下氢气声转动弛豫模型研究. 物理学报, 2018, 67(9): 094301. doi: 10.7498/aps.67.20172665
    [8] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [9] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理. 物理学报, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [10] 傅广生, 吴振球, 徐积仁, 黄南堂, 蒋义枫. BCl3振动激发弛豫的红外吸收研究. 物理学报, 1981, 30(11): 1456-1463. doi: 10.7498/aps.30.1456
    [11] 鲜于泽, 成泰民. 有限温度下二维Heisenberg铁磁系统的横向声频支声子激发. 物理学报, 2006, 55(9): 4828-4836. doi: 10.7498/aps.55.4828
    [12] 徐海英, 赵志刚, 刘 楣. 磁通运动的电压噪声频谱分析和动力学相变. 物理学报, 2005, 54(6): 2924-2928. doi: 10.7498/aps.54.2924
    [13] 吴炳国, 赵志刚, 尤育新, 刘 楣. 二维约瑟夫森结阵列中的相变及噪声频谱研究. 物理学报, 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [14] 欧阳玉花, 袁萍, 贾向东, 王小云, 薛思敏. 用信号处理技术及传播理论还原雷声频谱. 物理学报, 2013, 62(8): 084303. doi: 10.7498/aps.62.084303
    [15] 张包铮, 李宇新, 林美荣, 陈文驹. 多声子无辐射弛豫速率的理论研究. 物理学报, 1990, 39(2): 261-269. doi: 10.7498/aps.39.261
    [16] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [17] 魏荣爵, 张淑仪. 超声波在乙酸乙酯和乙酸甲酯中的弛豫吸收. 物理学报, 1962, 86(6): 298-304. doi: 10.7498/aps.18.298
    [18] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200196
    [19] 翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence. 物理学报, 2019, 68(13): 139501. doi: 10.7498/aps.68.20190282
    [20] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应. 物理学报, 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1702
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-22
  • 修回日期:  2012-02-20
  • 刊出日期:  2012-09-05

混合气体声复合弛豫频谱的解析模型

  • 1. 华中科技大学电子与信息工程系, 武汉 430074
    基金项目: 

    国家自然科学基金(批准号: 60971009, 61001011)

    高等学校博士学科点专项科研基金 (批准号: 20090142110019)

    湖北省自然科学基金(批准号: 2010CDB02701)和中央高校基本科研业务费 专项资金(批准号: 2012QN083)资助的课题.

摘要: 为研究声传播和分子多模式振动能量弛豫的相互关系,本文提出了一种混合气体声 复合弛豫频谱的解析模型.该模型从振动模式微观能量转移及其耦合形成宏观弛豫过程两个角度, 分析了依赖于声频率的混合气体有效热容.并通过求解振动模式能量转移的通用弛豫方程, 最终得到可同时体现主副弛豫过程的声弛豫吸收和声频散的解析结果.仿真结果表明, 对于CO2, CH4, N2和O2组成的多种混合气体, 该模型的声吸收谱与实验数据相符,峰值误差在1%以内,且反映了多振动模式形成的 声复合弛豫吸收谱上通常仅会显现1-2个吸收波峰的物理现象.与已有模型相比, 本解析模型可直接求出混合气体声弛豫频谱上特征点的解析形式,并利于对其进行定性定量分析. 从而为研究声传播特性与气体分子弛豫特性的相互关系提供了一个有效理论模型.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回