搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无序双层六角氮化硼量子薄膜的电子性质

肖化平 陈元平 杨凯科 魏晓林 孙立忠 钟建新

无序双层六角氮化硼量子薄膜的电子性质

肖化平, 陈元平, 杨凯科, 魏晓林, 孙立忠, 钟建新
PDF
导出引用
导出核心图
  • 基于安德森紧束缚模型,本文研究了无序双层六角氮化硼量子薄膜的电子性质. 数值计算结果表明在双层都无序掺杂的情况下,六角氮化硼量子薄膜的电子是局域的, 其表现为绝缘体性质;而对于单层掺杂(无论是氮原子还是硼原子)的双层六角氮化硼量子薄膜, 在能谱的带尾出现了持续的迁移率边.这就说明在单层掺杂的双层六角氮化硼量子薄膜中产生了 金属绝缘体转变.这一结果证实了有序-无序分区掺杂的理论模型,为理解及调控双层六角氮化硼量子薄膜 的电子性质提供了有益的理论指导.
    • 基金项目: 国家自然科学基金(批准号: 11074213, 51176161, 51006086, 11074211); 湖南省自然科学基金省市联合项目(批准号: 10JJ9001); 湖南省高校创新平台开放基金项目(批准号: 09K034)和教育部新世纪优秀人才支持计划 (批准号: NCET-10-0169)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Gunther S, Danhardt S, Wang B, Bocquet M L, Schmitt S, Wintterlin J 2011 Nano. Lett. 11 1895

    [4]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [5]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [6]

    Hu X H,Xu J M,Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [7]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [8]

    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker C W J 2002 Phys. Rev. Lett. 96 246802

    [9]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 19

    [11]

    Balandin1 A A 2011 Nature Materials 10 569

    [12]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V 2005 Proc. Natl Acad. Sci. USA 123 10451

    [13]

    Jin C H, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [14]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [15]

    Pauli T K, Bhattacharya P, Bose D N 1990 Appl. Phys. Lett. 56 2648

    [16]

    Li C, Bando Y, Zhi C Y, Huang Y, Golberg D 2009 Nanotechnology 20 385707

    [17]

    Li j, Gui G, Zhong J X 2008 J. Appl. Phys. 104 094311

    [18]

    Zheng F W, Zhou G, Liu Z R, Wu J, Duan W H, Gu B L, Zhang S B 2008 Phys. Rev. B 78 205415

    [19]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404

    [20]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [21]

    Chen Z G, Zou J, Liu G, Li F, Wang Y, Wang L, Yuan X L, Sekiguchi T, Cheng H M, Lu G Q 2008 ACS Nano. 2 2183

    [22]

    Michel K H, Verberck B 2009 Phys. Status Solidi b 246 2802

    [23]

    Pereira J M, Vasilopoulos J P, Peeters F M 2007 Nano Lett. 7 946

    [24]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [25]

    Li J, Gui G, Sun L Z, Zhong J X 2010 Acta Phys. Sin. 59 8820 (in Chinese) [李金, 桂贵, 孙立忠, 钟建新 2012 物理学报 59 8820]

    [26]

    Zhong J X, Stocks G M 2007 Phys. Rev. B 75 033410

    [27]

    Zhong J X, Stocks G M 2006 Nano Lett. 6 128

    [28]

    Shklovskii B I, Shapiro B, Sears B R, Lambrianides P, Shore H B 1993 Phys. Rev. B 47 11487

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Gunther S, Danhardt S, Wang B, Bocquet M L, Schmitt S, Wintterlin J 2011 Nano. Lett. 11 1895

    [4]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [5]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [6]

    Hu X H,Xu J M,Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [7]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [8]

    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker C W J 2002 Phys. Rev. Lett. 96 246802

    [9]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 19

    [11]

    Balandin1 A A 2011 Nature Materials 10 569

    [12]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V 2005 Proc. Natl Acad. Sci. USA 123 10451

    [13]

    Jin C H, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [14]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [15]

    Pauli T K, Bhattacharya P, Bose D N 1990 Appl. Phys. Lett. 56 2648

    [16]

    Li C, Bando Y, Zhi C Y, Huang Y, Golberg D 2009 Nanotechnology 20 385707

    [17]

    Li j, Gui G, Zhong J X 2008 J. Appl. Phys. 104 094311

    [18]

    Zheng F W, Zhou G, Liu Z R, Wu J, Duan W H, Gu B L, Zhang S B 2008 Phys. Rev. B 78 205415

    [19]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404

    [20]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [21]

    Chen Z G, Zou J, Liu G, Li F, Wang Y, Wang L, Yuan X L, Sekiguchi T, Cheng H M, Lu G Q 2008 ACS Nano. 2 2183

    [22]

    Michel K H, Verberck B 2009 Phys. Status Solidi b 246 2802

    [23]

    Pereira J M, Vasilopoulos J P, Peeters F M 2007 Nano Lett. 7 946

    [24]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [25]

    Li J, Gui G, Sun L Z, Zhong J X 2010 Acta Phys. Sin. 59 8820 (in Chinese) [李金, 桂贵, 孙立忠, 钟建新 2012 物理学报 59 8820]

    [26]

    Zhong J X, Stocks G M 2007 Phys. Rev. B 75 033410

    [27]

    Zhong J X, Stocks G M 2006 Nano Lett. 6 128

    [28]

    Shklovskii B I, Shapiro B, Sears B R, Lambrianides P, Shore H B 1993 Phys. Rev. B 47 11487

  • [1] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [2] 王江龙, 葛志启, 李慧玲, 刘洪飞, 于威. 后钙钛矿CaRhO3的电子结构和磁学性质的第一性原理研究. 物理学报, 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [3] 杨鑫鑫, 魏晓旭, 王军转, 施毅, 郑有炓. 高温氢退火还原V2O5制备二氧化钒薄膜及其性能的研究. 物理学报, 2013, 62(22): 227201. doi: 10.7498/aps.62.227201
    [4] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [5] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究. 物理学报, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [6] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [7] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制. 物理学报, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [8] 王红艳, 朱正和, 唐永建, 毛华平. AunY(n=1—9)掺杂团簇的结构和电子性质研究. 物理学报, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [9] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [10] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究. 物理学报, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [11] 阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪. BnY(n=1–11)团簇的结构和电子性质. 物理学报, 2014, 63(24): 243101. doi: 10.7498/aps.63.243101
    [12] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [13] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [14] 宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰. 杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响. 物理学报, 2016, 65(4): 046102. doi: 10.7498/aps.65.046102
    [15] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质. 物理学报, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [16] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [17] 王红艳, 李喜波, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [19] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [20] 郭云东, 王红艳, 李喜波, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1588
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-07
  • 修回日期:  2012-05-07
  • 刊出日期:  2012-09-05

无序双层六角氮化硼量子薄膜的电子性质

  • 1. 湘潭大学材料与光电物理学院 量子工程与微纳能源技术实验室, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号: 11074213, 51176161, 51006086, 11074211)

    湖南省自然科学基金省市联合项目(批准号: 10JJ9001)

    湖南省高校创新平台开放基金项目(批准号: 09K034)和教育部新世纪优秀人才支持计划 (批准号: NCET-10-0169)资助的课题.

摘要: 基于安德森紧束缚模型,本文研究了无序双层六角氮化硼量子薄膜的电子性质. 数值计算结果表明在双层都无序掺杂的情况下,六角氮化硼量子薄膜的电子是局域的, 其表现为绝缘体性质;而对于单层掺杂(无论是氮原子还是硼原子)的双层六角氮化硼量子薄膜, 在能谱的带尾出现了持续的迁移率边.这就说明在单层掺杂的双层六角氮化硼量子薄膜中产生了 金属绝缘体转变.这一结果证实了有序-无序分区掺杂的理论模型,为理解及调控双层六角氮化硼量子薄膜 的电子性质提供了有益的理论指导.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回