搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C波段机载合成孔径雷达海面风场反演新方法

艾未华 严卫 赵现斌 刘文俊 马烁

C波段机载合成孔径雷达海面风场反演新方法

艾未华, 严卫, 赵现斌, 刘文俊, 马烁
PDF
导出引用
导出核心图
  • 针对基于散射计地球物理模型函数的机载合成孔径雷达(SAR)海面风场反演中存在的风向获取依赖于图像风条纹或数值预报、 散射计数据和浮标等背景场资料, 风向与SAR图像时空分辨率不匹配, 进而影响机载SAR海面风场反演精度等问题, 本文根据机载SAR对海探测特点, 研究一种适用于C波段机载SAR的海面风场反演新方法. 利用SAR图像距离向不同入射角的后向散射系数, 依据地球物理模型构造最小代价函数, 通过代价函数的求解直接从机载SAR数据同时反演出海面风速和风向. 利用论文提出的海面风场反演方法分别对仿真SAR数据和实测C波段机载SAR数据进行风向、 风速的反演误差分析及试验验证.研究结果表明, 该方法适用于机载SAR海面风场反演, 可不依赖背景风向直接反演出精度较高的风速和风向; 雷达后向散射系数误差是决定海面风速、风向反演精度的关键因素, 辐射定标精度越高则反演误差越小; 海面风速反演误差随着风速的提高而增大, 当海面风速大于18 m/s时, 风速反演误差显著增加, 而海面风向的反演误差与风速无明显关系.
    • 基金项目: 国家自然科学基金(批准号: 41005018)、江苏省气象探测与信息处理重点实验室基金 (批准号: KDXS1106)、 解放军理工大学预先研究基金和气象海洋学院基础理论基金资助的课题.
    [1]

    Zhang L, Huang S X, Zhong J, Du H D 2010 Acta Phys. Sin. 59 7479 (in Chinese) [张亮, 黄思训, 钟剑, 杜华栋 2010 物理学报 59 7479]

    [2]

    Martine S 2004 An Introduction to Ocean Remote Sensing (Cambridge: Cambridge University Press) pp201-207

    [3]

    Lin H, Xu Q, Zheng Q 2008 Prog. Nat. Sci. 18 913

    [4]

    Zecchetto S, Biasio D 2008 IEEE Trans. Geosci. Remote Sens. 46 2983

    [5]

    Horstmann J, Koch W, Lehner S, Tonboe R 2000 IEEE Trans. Geosci. Remote Sens. 38 2122

    [6]

    Thompson D R, Beal R C 2000 Johns Hopkins APL Tech. Dig. 21 58

    [7]

    Monaldo F2000 Johns Hopkins APL Tech. Dig. 21 75

    [8]

    Cameron I, Lumsdon P, Walker N, Woodhouse I 2006 In Proceedings of SEASAR: Advances in SAR Oceanography from ENVISAT and ERS Missions Frascati, Italy, January 23-26, 2006 1

    [9]

    Lehner S, Pleskachevsky A, Bruck M 2012 Int. Geosci. Remote Sens, 33 7337

    [10]

    Yang J S 2005 SAR Remote Sensing Techniques of Sea Surface Wind, Surface Wave and Internal Wave (Beijing: Ocean Press) pp31-32 (in Chinese) [杨劲松 2005 合成孔径雷达海面风场、海浪和海洋内波遥感技术[M]. (北京: 海洋出版社) 第31–32页].

    [11]

    Apel J R 1994 J. Geophys. Res. 99 16269

    [12]

    Levy G 1998 Proc. Int. Geosci. Remote Sens. Symp. 1437

    [13]

    Vachon P W, Dobson F W 1996 The Global Atmosphere and Ocean System 5 177

    [14]

    Ynag J S, Huang W G, Zhou C B 2001 J. Remote Sens. 5 13 (in Chinese) [杨劲松, 黄韦艮, 周长宝 2001 遥感学报 5 13]

    [15]

    Wolfgang K 2004 IEEE Trans. Geosci. Remote Sens. 42 702

    [16]

    Zhang R W, Yan W, Ai W H, Ma S 2011 J. Mircowaves 27 79 (in Chinese) [张日伟, 严卫, 艾未华, 马烁 2011 微波学报 27 79]

    [17]

    Gladeston C L, Daniela M U, Fátima N S 2010 Sensors 10 5994

    [18]

    Ai W H, Kong Y, Zhao X B 2012 Acta Phys. Sin. 61 148403 (in Chinese) [艾未华, 孔毅, 赵现斌 2012 物理学报 61 148403]

    [19]

    Kong Y, Zhao X B, Ai W H, Han D, Xue J 2011 J. PLA Univ. of Sci. and Tech. 12 301(In Chinese) [孔毅, 赵现斌, 艾未华, 韩丁, 薛剑 2011 解放军理工大学学报 12 301]

    [20]

    Biasio F D, Zecchetto S 2012 Euro. J. Remote Sens. 45 141

    [21]

    Jiang Z H, Huang S X, Shi H Q 2010 Acta Phys. Sin. 59 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青 2010 物理学报 108402]

    [22]

    Jiang Z H, Huang S X, He R, Zhou C T 2011 Acta Phys. Sin. 60 068401 (in Chinese) [姜祝辉, 黄思训, 何然, 周晨腾 2011 物理学报 60 068401]

    [23]

    Levy G, Brown R A 1998 Ed. by Brown R A. Earth Ocean and Space 128

    [24]

    Horstmann J, Lehner S, Koch W, Tonboe R 2000 Johns Hopkins APL Tech. Dig. 21 100

    [25]

    Mouche A A, Collard F 2012 IEEE Trans. Geosci. Remote Sens. 50 2901

    [26]

    Hersbach H, Stoffelen A, Haan S D 2007 J. Geophys. Res. 112 3006

    [27]

    Zhang B, Perrie W 2012 Bull. Amer. Meteor. Soc. 93 531

    [28]

    Zhang B, Perrie W, He Y 2011 J. Geophys. Res. 116 C08008

    [29]

    Zhang B, Perrie W, Vachon P W, Li X, Pichel W G, Guo J, He Y 2012 IEEE Trans. Geosci. Remote Sens. 50 1

    [30]

    He Y J, Perrie W, Zou P W 2005 IEEE Trans. Geosci. Remote Sens. 43 1453

    [31]

    Zhao X B, Kong Y, Yan W, Ai W H, Liu W J 2012 Acta Phys. Sin. 61 148404 (in Chinese) [赵现斌, 孔毅, 严卫, 艾未华, 刘文俊 2012 物理学报 61 148404]

  • [1]

    Zhang L, Huang S X, Zhong J, Du H D 2010 Acta Phys. Sin. 59 7479 (in Chinese) [张亮, 黄思训, 钟剑, 杜华栋 2010 物理学报 59 7479]

    [2]

    Martine S 2004 An Introduction to Ocean Remote Sensing (Cambridge: Cambridge University Press) pp201-207

    [3]

    Lin H, Xu Q, Zheng Q 2008 Prog. Nat. Sci. 18 913

    [4]

    Zecchetto S, Biasio D 2008 IEEE Trans. Geosci. Remote Sens. 46 2983

    [5]

    Horstmann J, Koch W, Lehner S, Tonboe R 2000 IEEE Trans. Geosci. Remote Sens. 38 2122

    [6]

    Thompson D R, Beal R C 2000 Johns Hopkins APL Tech. Dig. 21 58

    [7]

    Monaldo F2000 Johns Hopkins APL Tech. Dig. 21 75

    [8]

    Cameron I, Lumsdon P, Walker N, Woodhouse I 2006 In Proceedings of SEASAR: Advances in SAR Oceanography from ENVISAT and ERS Missions Frascati, Italy, January 23-26, 2006 1

    [9]

    Lehner S, Pleskachevsky A, Bruck M 2012 Int. Geosci. Remote Sens, 33 7337

    [10]

    Yang J S 2005 SAR Remote Sensing Techniques of Sea Surface Wind, Surface Wave and Internal Wave (Beijing: Ocean Press) pp31-32 (in Chinese) [杨劲松 2005 合成孔径雷达海面风场、海浪和海洋内波遥感技术[M]. (北京: 海洋出版社) 第31–32页].

    [11]

    Apel J R 1994 J. Geophys. Res. 99 16269

    [12]

    Levy G 1998 Proc. Int. Geosci. Remote Sens. Symp. 1437

    [13]

    Vachon P W, Dobson F W 1996 The Global Atmosphere and Ocean System 5 177

    [14]

    Ynag J S, Huang W G, Zhou C B 2001 J. Remote Sens. 5 13 (in Chinese) [杨劲松, 黄韦艮, 周长宝 2001 遥感学报 5 13]

    [15]

    Wolfgang K 2004 IEEE Trans. Geosci. Remote Sens. 42 702

    [16]

    Zhang R W, Yan W, Ai W H, Ma S 2011 J. Mircowaves 27 79 (in Chinese) [张日伟, 严卫, 艾未华, 马烁 2011 微波学报 27 79]

    [17]

    Gladeston C L, Daniela M U, Fátima N S 2010 Sensors 10 5994

    [18]

    Ai W H, Kong Y, Zhao X B 2012 Acta Phys. Sin. 61 148403 (in Chinese) [艾未华, 孔毅, 赵现斌 2012 物理学报 61 148403]

    [19]

    Kong Y, Zhao X B, Ai W H, Han D, Xue J 2011 J. PLA Univ. of Sci. and Tech. 12 301(In Chinese) [孔毅, 赵现斌, 艾未华, 韩丁, 薛剑 2011 解放军理工大学学报 12 301]

    [20]

    Biasio F D, Zecchetto S 2012 Euro. J. Remote Sens. 45 141

    [21]

    Jiang Z H, Huang S X, Shi H Q 2010 Acta Phys. Sin. 59 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青 2010 物理学报 108402]

    [22]

    Jiang Z H, Huang S X, He R, Zhou C T 2011 Acta Phys. Sin. 60 068401 (in Chinese) [姜祝辉, 黄思训, 何然, 周晨腾 2011 物理学报 60 068401]

    [23]

    Levy G, Brown R A 1998 Ed. by Brown R A. Earth Ocean and Space 128

    [24]

    Horstmann J, Lehner S, Koch W, Tonboe R 2000 Johns Hopkins APL Tech. Dig. 21 100

    [25]

    Mouche A A, Collard F 2012 IEEE Trans. Geosci. Remote Sens. 50 2901

    [26]

    Hersbach H, Stoffelen A, Haan S D 2007 J. Geophys. Res. 112 3006

    [27]

    Zhang B, Perrie W 2012 Bull. Amer. Meteor. Soc. 93 531

    [28]

    Zhang B, Perrie W, He Y 2011 J. Geophys. Res. 116 C08008

    [29]

    Zhang B, Perrie W, Vachon P W, Li X, Pichel W G, Guo J, He Y 2012 IEEE Trans. Geosci. Remote Sens. 50 1

    [30]

    He Y J, Perrie W, Zou P W 2005 IEEE Trans. Geosci. Remote Sens. 43 1453

    [31]

    Zhao X B, Kong Y, Yan W, Ai W H, Liu W J 2012 Acta Phys. Sin. 61 148404 (in Chinese) [赵现斌, 孔毅, 严卫, 艾未华, 刘文俊 2012 物理学报 61 148404]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1593
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-26
  • 修回日期:  2012-11-14
  • 刊出日期:  2013-03-05

C波段机载合成孔径雷达海面风场反演新方法

  • 1. 解放军理工大学气象海洋学院, 南京 211101;
  • 2. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044
    基金项目: 

    国家自然科学基金(批准号: 41005018)、江苏省气象探测与信息处理重点实验室基金 (批准号: KDXS1106)、 解放军理工大学预先研究基金和气象海洋学院基础理论基金资助的课题.

摘要: 针对基于散射计地球物理模型函数的机载合成孔径雷达(SAR)海面风场反演中存在的风向获取依赖于图像风条纹或数值预报、 散射计数据和浮标等背景场资料, 风向与SAR图像时空分辨率不匹配, 进而影响机载SAR海面风场反演精度等问题, 本文根据机载SAR对海探测特点, 研究一种适用于C波段机载SAR的海面风场反演新方法. 利用SAR图像距离向不同入射角的后向散射系数, 依据地球物理模型构造最小代价函数, 通过代价函数的求解直接从机载SAR数据同时反演出海面风速和风向. 利用论文提出的海面风场反演方法分别对仿真SAR数据和实测C波段机载SAR数据进行风向、 风速的反演误差分析及试验验证.研究结果表明, 该方法适用于机载SAR海面风场反演, 可不依赖背景风向直接反演出精度较高的风速和风向; 雷达后向散射系数误差是决定海面风速、风向反演精度的关键因素, 辐射定标精度越高则反演误差越小; 海面风速反演误差随着风速的提高而增大, 当海面风速大于18 m/s时, 风速反演误差显著增加, 而海面风向的反演误差与风速无明显关系.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回