搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一级相变时的红外特征辐射–熔融结晶和蒸气冷凝或沉淀

Tatartchenko Vitali 刘一凡 吴勇 周健杰 孙大伟 袁军 朱枝勇 Smirnov Pavel Rusanov Artem 牛沈军 李东振 宗志远 陈晓飞

一级相变时的红外特征辐射–熔融结晶和蒸气冷凝或沉淀

Tatartchenko Vitali, 刘一凡, 吴勇, 周健杰, 孙大伟, 袁军, 朱枝勇, Smirnov Pavel, Rusanov Artem, 牛沈军, 李东振, 宗志远, 陈晓飞
PDF
导出引用
导出核心图
  • 本文报道了一种新的物理现象–一级相变时 (熔融结晶, 蒸气冷凝或沉淀)的红外特征辐射. 实验结果根据相应的理论模型来进行分析. 此理论模型是基于一个论断, 那就是粒子(原子, 分子, 团簇)从高能级亚稳态 (气态或液态) 向低能级稳态 (液态或结晶态) 相变时释放出一个或多个光子. 这些光子的能量取决于相变潜热和新相粒子的结合特性. 对所有研究过的物质来说, 这种能量集中在红外区. 这就是为什么这种辐射被称作红外特征辐射. 在雾和云的形成过程中, 水发生了结晶、冷凝、升华, 从而产生了大量红外辐射留在了大气中. 因而, 该研究的结果必然对大气现象有很重要的影响: 它是地球冷却的因素之一; 冰雹云的形成伴随着强烈的红外辐射, 这种辐射可用来表征高能相转化为低能相的过程, 可以作为一种气象预警. 红外特征辐射似乎可以用来解释木星的呈红色现象. 它可以用于大气储能, 就此, 继风能、水能、太阳能、地热能后, 红外特征辐射成为生态学上第五种纯净的能源.
      通信作者: Tatartchenko Vitali
    [1]

    Tatarchenko V A 1979 Soviet Physics - Crystallography 24 238

    [2]

    Umarov L M, Tatarchenko V A 1984 Soviet Physics - Crystallography 29 670

    [3]

    Tatarchenko V A, Umarov L M 1980 Soviet Physics-Crystallography 25 748

    [4]

    Tatarchenko V A 1993 Shaped crystal growth London Kluwer

    [5]

    Perel'man M E, Tatartchenko V A 2007 arXiv 0711.3570 1

    [6]

    Perel'man M E, Tatartchenko V A 2008 Phys. Lett. A 372 2480

    [7]

    Perel'man M E, Rubinstein G M, Tatartchenko V A 2008 Phys. Lett. A 372 4100

    [8]

    Tatartchenko V A 2008 J. Crystal Growth 310 525

    [9]

    Tatartchenko V A 2009 Rev. Adv. Mater. Sci. 20 58

    [10]

    Tatartchenko V A 2009 Optics & Laser Technology 41 949

    [11]

    Tatartchenko V A 2010 Proceedings of 7th Conference "Modern Problems of Distance Probes of Earth from Space" 7 310

    [12]

    Tatartchenko V A 2010 Investigation of Earth from Space 2 88 (in Russian)

    [13]

    Tatartchenko V A 2010 Atmospheric and Oceanic Optics 23 169

    [14]

    Tatartchenko V A 2010 Earth Sci. Rev. 101 24

    [15]

    Tatartchenko V A 2011 Earth Sci. Rev. 107 311

    [16]

    Tatartchenko V A, Liu Y F, Chen W Y, Smirnov P V 2012 Earth Sci. Rev. 114 218

    [17]

    Tatartchenko V A, Liu Y F, Chen W Y, Zhou J J, Zhu Z Y, Smirnov P V, Niu S J, Li D Z, Lu Y F 2012 Lecture Notes in Information Technology 9 191

    [18]

    Ravilious K Cloud 2010 New Scientist 27 November 38

    [19]

    Dicke R H 1954 Phys. Rev. 93 99

    [20]

    Ginzburg V L, Tsytovich V N 1984 Transient Radiation and Transient Scattering Moscow Nauka

    [21]

    Wisniak J 2001 The Chemical Educator 6 55

    [22]

    Nichols L W, Lamar J 1968 Applied Optics 7 1757

    [23]

    Gao S T, Zhou Y S, Lei T 2002 中国物理快报 19 878

    [24]

    Wu S C, Fan S H, Chen F 2003 中国物理快报 20 2192

    [25]

    Vilor N V, Abushenko N A, Tastchilin S A 2004 Investigation of the Earth from Space 2 17

    [26]

    Potter W R, Hoffman J G 1968 Infrared Physics 8 265

    [27]

    Carlon H R 1971 Appl. Opt. 10 2297

    [28]

    Carlon H R 1979 Infrared Physics 19 49

    [29]

    Wang Kuo-Ting 2011 Phase-transition radiation of water Urbana Illinois

    [30]

    Wu W H 2012 Temperature effect of phase transition radiation of water Urbana Illinois

    [31]

    Wang K T, Brewster M Q 2010 International Communications in Heat and Mass Transfer 37 945

    [32]

    Xie H R, Zhu M Y, Zhang B, Guan X 2012 Energy Procedia 16 997

    [33]

    Zhang B, Zhu M Y, Wang C Y, Guan X 2012 Energy Procedia 16 1003

  • [1]

    Tatarchenko V A 1979 Soviet Physics - Crystallography 24 238

    [2]

    Umarov L M, Tatarchenko V A 1984 Soviet Physics - Crystallography 29 670

    [3]

    Tatarchenko V A, Umarov L M 1980 Soviet Physics-Crystallography 25 748

    [4]

    Tatarchenko V A 1993 Shaped crystal growth London Kluwer

    [5]

    Perel'man M E, Tatartchenko V A 2007 arXiv 0711.3570 1

    [6]

    Perel'man M E, Tatartchenko V A 2008 Phys. Lett. A 372 2480

    [7]

    Perel'man M E, Rubinstein G M, Tatartchenko V A 2008 Phys. Lett. A 372 4100

    [8]

    Tatartchenko V A 2008 J. Crystal Growth 310 525

    [9]

    Tatartchenko V A 2009 Rev. Adv. Mater. Sci. 20 58

    [10]

    Tatartchenko V A 2009 Optics & Laser Technology 41 949

    [11]

    Tatartchenko V A 2010 Proceedings of 7th Conference "Modern Problems of Distance Probes of Earth from Space" 7 310

    [12]

    Tatartchenko V A 2010 Investigation of Earth from Space 2 88 (in Russian)

    [13]

    Tatartchenko V A 2010 Atmospheric and Oceanic Optics 23 169

    [14]

    Tatartchenko V A 2010 Earth Sci. Rev. 101 24

    [15]

    Tatartchenko V A 2011 Earth Sci. Rev. 107 311

    [16]

    Tatartchenko V A, Liu Y F, Chen W Y, Smirnov P V 2012 Earth Sci. Rev. 114 218

    [17]

    Tatartchenko V A, Liu Y F, Chen W Y, Zhou J J, Zhu Z Y, Smirnov P V, Niu S J, Li D Z, Lu Y F 2012 Lecture Notes in Information Technology 9 191

    [18]

    Ravilious K Cloud 2010 New Scientist 27 November 38

    [19]

    Dicke R H 1954 Phys. Rev. 93 99

    [20]

    Ginzburg V L, Tsytovich V N 1984 Transient Radiation and Transient Scattering Moscow Nauka

    [21]

    Wisniak J 2001 The Chemical Educator 6 55

    [22]

    Nichols L W, Lamar J 1968 Applied Optics 7 1757

    [23]

    Gao S T, Zhou Y S, Lei T 2002 中国物理快报 19 878

    [24]

    Wu S C, Fan S H, Chen F 2003 中国物理快报 20 2192

    [25]

    Vilor N V, Abushenko N A, Tastchilin S A 2004 Investigation of the Earth from Space 2 17

    [26]

    Potter W R, Hoffman J G 1968 Infrared Physics 8 265

    [27]

    Carlon H R 1971 Appl. Opt. 10 2297

    [28]

    Carlon H R 1979 Infrared Physics 19 49

    [29]

    Wang Kuo-Ting 2011 Phase-transition radiation of water Urbana Illinois

    [30]

    Wu W H 2012 Temperature effect of phase transition radiation of water Urbana Illinois

    [31]

    Wang K T, Brewster M Q 2010 International Communications in Heat and Mass Transfer 37 945

    [32]

    Xie H R, Zhu M Y, Zhang B, Guan X 2012 Energy Procedia 16 997

    [33]

    Zhang B, Zhu M Y, Wang C Y, Guan X 2012 Energy Procedia 16 1003

  • [1] 胡蕴成, 叶祥熙, 明辰, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [2] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [3] 刘忍肖, 董 鹏, 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟. 带电胶体粒子结晶过程的实验研究. 物理学报, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [4] 仲维卓. 人工水晶的结晶习性与缺陷. 物理学报, 1979, 165(2): 240-249. doi: 10.7498/aps.28.240
    [5] 颜鸣皋, 周邦新. 冷轧铜板再结晶織构的形成. 物理学报, 1958, 41(2): 121-135. doi: 10.7498/aps.14.121
    [6] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [7] 张文献, 庄军, 彭坤, 明辰, 叶祥熙, 宁西京. 原子掺杂对单元材料结晶能力的影响. 物理学报, 2010, 59(10): 7245-7251. doi: 10.7498/aps.59.7245
    [8] 鲍希茂, 黄信凡, 邢昆山. 氢化非晶硅激光结晶温场控制模型. 物理学报, 1987, 36(1): 74-77. doi: 10.7498/aps.36.74
    [9] 戴礼智, 张信钰. 国产纯铁的轧制与再结晶织构. 物理学报, 1958, 40(1): 17-22. doi: 10.7498/aps.14.17
    [10] 周邦新, 颜鸣皋. 磷对冷轧纯铜再结晶的影响. 物理学报, 1963, 91(10): 633-648. doi: 10.7498/aps.19.633
    [11] 尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明. 玻璃微球内氘结晶行为研究. 物理学报, 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
    [12] 周邦新. 钼单晶体的冷轧及再结晶织构. 物理学报, 1963, 97(5): 297-305. doi: 10.7498/aps.19.297
    [13] 于同旭, 张文彬, 纪爱玲, 王强. 受限钠盐水溶液孔外结晶现象. 物理学报, 2016, 65(8): 089201. doi: 10.7498/aps.65.089201
    [14] 韩甫田, 刘平安, 唐振方, 施其宏, 郭立平. 半结晶聚酯(PET)的二相共存结构的表征. 物理学报, 2001, 50(6): 1132-1138. doi: 10.7498/aps.50.1132
    [15] 赵辉, 董宝中, 郭梅芳, 王良诗, 乔金梁. 小角x射线散射结晶聚合物结构的研究. 物理学报, 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
    [16] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [17] 邹和成, 乔 峰, 吴良才, 黄信凡, 李 鑫, 韩培高, 马忠元, 李 伟, 陈坤基. 激光干涉结晶技术制备二维有序分布纳米硅阵列. 物理学报, 2005, 54(8): 3646-3650. doi: 10.7498/aps.54.3646
    [18] 刘志文, 谷建峰, 付伟佳, 孙成伟, 李 勇, 张庆瑜. 工作气压对磁控溅射ZnO薄膜结晶特性及生长行为的影响. 物理学报, 2006, 55(10): 5479-5486. doi: 10.7498/aps.55.5479
    [19] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [20] 宫本恭幸, 小田俊理, 姚 尧, 方忠慧, 周 江, 李 伟, 马忠元, 徐 骏, 黄信凡, 陈坤基. 激光干涉结晶法制备一维周期结构的纳米硅阵列. 物理学报, 2008, 57(8): 4960-4965. doi: 10.7498/aps.57.4960
  • 引用本文:
    Citation:
计量
  • 文章访问数:  877
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-03
  • 修回日期:  2012-11-23
  • 刊出日期:  2013-04-05

一级相变时的红外特征辐射–熔融结晶和蒸气冷凝或沉淀

  • 1. 上海中电振华晶体技术有限公司, 上海 201210
  • 通信作者: Tatartchenko Vitali

摘要: 本文报道了一种新的物理现象–一级相变时 (熔融结晶, 蒸气冷凝或沉淀)的红外特征辐射. 实验结果根据相应的理论模型来进行分析. 此理论模型是基于一个论断, 那就是粒子(原子, 分子, 团簇)从高能级亚稳态 (气态或液态) 向低能级稳态 (液态或结晶态) 相变时释放出一个或多个光子. 这些光子的能量取决于相变潜热和新相粒子的结合特性. 对所有研究过的物质来说, 这种能量集中在红外区. 这就是为什么这种辐射被称作红外特征辐射. 在雾和云的形成过程中, 水发生了结晶、冷凝、升华, 从而产生了大量红外辐射留在了大气中. 因而, 该研究的结果必然对大气现象有很重要的影响: 它是地球冷却的因素之一; 冰雹云的形成伴随着强烈的红外辐射, 这种辐射可用来表征高能相转化为低能相的过程, 可以作为一种气象预警. 红外特征辐射似乎可以用来解释木星的呈红色现象. 它可以用于大气储能, 就此, 继风能、水能、太阳能、地热能后, 红外特征辐射成为生态学上第五种纯净的能源.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回