搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物结晶理论进展

严大东 张兴华

聚合物结晶理论进展

严大东, 张兴华
PDF
导出引用
  • 本文简要回顾了高分子结晶理论发展的历史. 在介绍传统的Hoffman-Lauritzen理论的基础上,总结了近年来高分子结晶实验特别是X光散射实验方面的最新进展. 介绍了建立在这些实验基础之上的一些新的结晶理论,主要代表工作包括Strobl的中介相模型、Olmsted的spinodal辅助结晶理论、Muthukuamr的分子模拟与成核理论等.
      通信作者: 严大东, yandd@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21374011, 21434001)资助的课题.
    [1]

    Faraday-Discussion 1979 Organization of Macromolecules in the Condensed Phase (Faraday discussions of the Chemical Society) (Faraday Division, Chemical Society) 85

    [2]

    Lauritzen J I, Hoffman J D 1961 J. Res. Natl. Bur. Stand. Sect. A 64 73

    [3]

    Lauritzen J I, Hoffman J D 1961 J. Res. Natl. Bur. Stand. Sect. A 65 297

    [4]

    Hoffman J D, Davis G T, Lauritzen J I 1976 in Treaties on Solid State Chemistry (Ed. by N. B. Hannay) (Vol. 3) (New York: Plenum) p497

    [5]

    Rastogi S, Hikosaka M, Kawabata H, Keller A 1991 Macromolecules 24 6384

    [6]

    Keller A, Hikosaka M, Rastogi S, Toda A, Barham P, Goldbeck-Wood G 1994 J. Mater. Sci. 29 2579

    [7]

    Imai M, Kaji K, Kanaya T, Sakai Y 1995 Phys. Rev. B 52 12696

    [8]

    Hauser G, Schmidtke J, Strobl G 1998 Macromolecules 31 6250

    [9]

    Olmsted P D, Poon W C K, McLeish T C B, Terrill N J, Ryan A J 1998 Phys. Rev. Lett. 81 373

    [10]

    Liu C, Muthukumar M 1998 J. Chem. Phys. 109 2563

    [11]

    Muthukumar M, Welch P 2000 Polymer 41 8833

    [12]

    Welch P, Muthukumar M 2000 Phys. Rev. Lett. 87 218302

    [13]

    Muthukumar M 2003 Phil. Trans. R. Soc. Lond. A 361 539

    [14]

    Muthukumar M 2005 Adv. Polym. Sci. 191 241

    [15]

    Strobl G 2000 Eur. Phys. J. E 3 165

    [16]

    Strobl G 2009 Rev. Mod. Phys. 81 1287

    [17]

    Strobl G 2007 The Physics of Polymer (New York: Springer)

    [18]

    Bassett D C 1981 Principles of Polymer Morphology (Cambridge: Cambridge University Press)

    [19]

    Hoffman J D, Miller R L 1997 Polymer 38 3151

    [20]

    Imai M, Mori K, Mizukami T, Kaji K, Kanaya T 1992 Polymer 33 4457

    [21]

    Imai M, Kaji K, Kanaya T 1993 Phys. Rev. Lett. 71 4162

    [22]

    Imai M, Kaji K, Kanaya T 1994 Macromolecules 27 7102

    [23]

    Ezquerra T A, Lopezcabarcos E, Hsiao B S, Baltacalleja F J 1996 Phys. Rev. E 54 989

    [24]

    Terrill N J, Fairclough J P A, Komanschek B U, Young R J, Ryan A J 1998 Polymer 39 2381

    [25]

    Kaji K, Nishida K, Kanay T, Mstsuba G, Konishi T, Imai M 2005 Adv. Polym. Sci. 12 13

    [26]

    Tan H G, Miao B, Yan D D 2003 J. Chem. Phys. 19 2886

    [27]

    Gee R H, Lacevic N, Fried L 2006 Nature Mater. 5 39

    [28]

    Tang J Z, Zhang X H, Yan D D 2015 J. Chem. Phys. 143 204903

    [29]

    Jiang Y, Yan D D, Gao X, Han C C, Jin X G, Li L, WangY, Chan C M 2003 Macromolecules 36 3652

  • [1]

    Faraday-Discussion 1979 Organization of Macromolecules in the Condensed Phase (Faraday discussions of the Chemical Society) (Faraday Division, Chemical Society) 85

    [2]

    Lauritzen J I, Hoffman J D 1961 J. Res. Natl. Bur. Stand. Sect. A 64 73

    [3]

    Lauritzen J I, Hoffman J D 1961 J. Res. Natl. Bur. Stand. Sect. A 65 297

    [4]

    Hoffman J D, Davis G T, Lauritzen J I 1976 in Treaties on Solid State Chemistry (Ed. by N. B. Hannay) (Vol. 3) (New York: Plenum) p497

    [5]

    Rastogi S, Hikosaka M, Kawabata H, Keller A 1991 Macromolecules 24 6384

    [6]

    Keller A, Hikosaka M, Rastogi S, Toda A, Barham P, Goldbeck-Wood G 1994 J. Mater. Sci. 29 2579

    [7]

    Imai M, Kaji K, Kanaya T, Sakai Y 1995 Phys. Rev. B 52 12696

    [8]

    Hauser G, Schmidtke J, Strobl G 1998 Macromolecules 31 6250

    [9]

    Olmsted P D, Poon W C K, McLeish T C B, Terrill N J, Ryan A J 1998 Phys. Rev. Lett. 81 373

    [10]

    Liu C, Muthukumar M 1998 J. Chem. Phys. 109 2563

    [11]

    Muthukumar M, Welch P 2000 Polymer 41 8833

    [12]

    Welch P, Muthukumar M 2000 Phys. Rev. Lett. 87 218302

    [13]

    Muthukumar M 2003 Phil. Trans. R. Soc. Lond. A 361 539

    [14]

    Muthukumar M 2005 Adv. Polym. Sci. 191 241

    [15]

    Strobl G 2000 Eur. Phys. J. E 3 165

    [16]

    Strobl G 2009 Rev. Mod. Phys. 81 1287

    [17]

    Strobl G 2007 The Physics of Polymer (New York: Springer)

    [18]

    Bassett D C 1981 Principles of Polymer Morphology (Cambridge: Cambridge University Press)

    [19]

    Hoffman J D, Miller R L 1997 Polymer 38 3151

    [20]

    Imai M, Mori K, Mizukami T, Kaji K, Kanaya T 1992 Polymer 33 4457

    [21]

    Imai M, Kaji K, Kanaya T 1993 Phys. Rev. Lett. 71 4162

    [22]

    Imai M, Kaji K, Kanaya T 1994 Macromolecules 27 7102

    [23]

    Ezquerra T A, Lopezcabarcos E, Hsiao B S, Baltacalleja F J 1996 Phys. Rev. E 54 989

    [24]

    Terrill N J, Fairclough J P A, Komanschek B U, Young R J, Ryan A J 1998 Polymer 39 2381

    [25]

    Kaji K, Nishida K, Kanay T, Mstsuba G, Konishi T, Imai M 2005 Adv. Polym. Sci. 12 13

    [26]

    Tan H G, Miao B, Yan D D 2003 J. Chem. Phys. 19 2886

    [27]

    Gee R H, Lacevic N, Fried L 2006 Nature Mater. 5 39

    [28]

    Tang J Z, Zhang X H, Yan D D 2015 J. Chem. Phys. 143 204903

    [29]

    Jiang Y, Yan D D, Gao X, Han C C, Jin X G, Li L, WangY, Chan C M 2003 Macromolecules 36 3652

  • [1] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [2] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [3] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟. 物理学报, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [4] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [5] 杨俊升, 朱子亮, 曹启龙. 预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟. 物理学报, 2020, 69(3): 038101. doi: 10.7498/aps.69.20191191
    [6] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [7] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [8] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [9] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [10] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [11] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响. 物理学报, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [12] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究. 物理学报, 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [13] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型. 物理学报, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [14] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [15] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [16] 黄永宪, 吕世雄, 田修波, 杨士勤, Fu Ricky, Chu K Paul, 冷劲松, 李垚. 聚合物物理属性对离子注入效应的影响. 物理学报, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [17] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [18] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道. 物理学报, 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [19] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [20] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究. 物理学报, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1778
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2016-09-19
  • 刊出日期:  2016-09-05

聚合物结晶理论进展

  • 1. 北京师范大学物理系, 北京 100875;
  • 2. 北京交通大学理学院, 北京 100044
  • 通信作者: 严大东, yandd@bnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 21374011, 21434001)资助的课题.

摘要: 本文简要回顾了高分子结晶理论发展的历史. 在介绍传统的Hoffman-Lauritzen理论的基础上,总结了近年来高分子结晶实验特别是X光散射实验方面的最新进展. 介绍了建立在这些实验基础之上的一些新的结晶理论,主要代表工作包括Strobl的中介相模型、Olmsted的spinodal辅助结晶理论、Muthukuamr的分子模拟与成核理论等.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回