搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子辐照聚合物带电特性多参数共同作用的数值模拟

封国宝 王芳 曹猛

电子辐照聚合物带电特性多参数共同作用的数值模拟

封国宝, 王芳, 曹猛
PDF
导出引用
  • 电子辐照聚合物样品的带电特性是扫描电子显微镜成像、电子束探针微分析以及空间器件辐照效应等领域的一个重要研究课题. 通过建立基于蒙特卡罗方法的电子散射和时域有限差分法的电子输运的数值模型, 并采用高效的多线程并行计算, 模拟了电子非透射辐照聚合物样品的带电特性, 得到了带电稳态下的样品底部泄漏电流密度、表面负电位以及样品总电荷密度等带电特征量受入射电子能量、入射电流密度、样品材料的电子迁移率、样品厚度等相关参数共同作用的影响. 结果表明, 一个参数的变化使表面负电位增强时, 其他参数对负电位的影响将增强. 样品的带电稳态特征量在同一个电流平衡的模式下受参数影响的变化是单调的. 当电流平衡模式发生变化时, 如在入射电子能量较低的条件下, 样品内部的总电荷量会随着样品厚度的增大而先增加后减小, 出现局部极大值. 样品底部的泄漏电流密度随着入射电流密度的增大而近线性成比例地增大. 研究结果对于揭示电子辐照聚合物的带电规律及微观机理、预测不同条件下的样品带电状态具有重要科学意义.
      通信作者: 王芳, wangfang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175140, 11004157, 11204229)、空间微波技术国家重点实验室基金(批准号: 9140C530101130C53013)和中央高校基本科研业务费资助的课题.
    [1]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]

    [2]

    Cazaux J 2005 J. Microsc. 217 16

    [3]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [4]

    Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004

    [5]

    Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407

    [6]

    Ura K 1998 J. Electron Microsc. 47 143

    [7]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [8]

    Li W J, Bauhofer W 2011 Carbon 49 3891

    [9]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [10]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [11]

    Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410

    [12]

    Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123

    [13]

    Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979

    [14]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [15]

    Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117

    [16]

    Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209

    [17]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157

    [18]

    Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665

    [19]

    Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988

    [20]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103

    [21]

    Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]

    [22]

    Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711

    [23]

    Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942

    [24]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [25]

    Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890

    [26]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [27]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [28]

    Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904

    [29]

    Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955

    [30]

    Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763

    [31]

    Li W Q, Zhang H B 2010 Micron 41 416

    [32]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 物理学报 61 241401]

    [33]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [34]

    Penn D R 1987 Phys. Rev. B 35 482

    [35]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [36]

    Joy D C, Luo S 1989 Scanning 11 176

    [37]

    Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79

    [38]

    Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443

  • [1]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]

    [2]

    Cazaux J 2005 J. Microsc. 217 16

    [3]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [4]

    Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004

    [5]

    Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407

    [6]

    Ura K 1998 J. Electron Microsc. 47 143

    [7]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [8]

    Li W J, Bauhofer W 2011 Carbon 49 3891

    [9]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [10]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [11]

    Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410

    [12]

    Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123

    [13]

    Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979

    [14]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [15]

    Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117

    [16]

    Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209

    [17]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157

    [18]

    Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665

    [19]

    Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988

    [20]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103

    [21]

    Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]

    [22]

    Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711

    [23]

    Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942

    [24]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [25]

    Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890

    [26]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [27]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [28]

    Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904

    [29]

    Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955

    [30]

    Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763

    [31]

    Li W Q, Zhang H B 2010 Micron 41 416

    [32]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 物理学报 61 241401]

    [33]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [34]

    Penn D R 1987 Phys. Rev. B 35 482

    [35]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [36]

    Joy D C, Luo S 1989 Scanning 11 176

    [37]

    Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79

    [38]

    Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1495
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-02
  • 修回日期:  2015-08-02
  • 刊出日期:  2015-11-05

电子辐照聚合物带电特性多参数共同作用的数值模拟

  • 1. 西安交通大学电子科学与技术系, 电子物理与器件教育部重点实验室, 西安 710049
  • 通信作者: 王芳, wangfang@mail.xjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11175140, 11004157, 11204229)、空间微波技术国家重点实验室基金(批准号: 9140C530101130C53013)和中央高校基本科研业务费资助的课题.

摘要: 电子辐照聚合物样品的带电特性是扫描电子显微镜成像、电子束探针微分析以及空间器件辐照效应等领域的一个重要研究课题. 通过建立基于蒙特卡罗方法的电子散射和时域有限差分法的电子输运的数值模型, 并采用高效的多线程并行计算, 模拟了电子非透射辐照聚合物样品的带电特性, 得到了带电稳态下的样品底部泄漏电流密度、表面负电位以及样品总电荷密度等带电特征量受入射电子能量、入射电流密度、样品材料的电子迁移率、样品厚度等相关参数共同作用的影响. 结果表明, 一个参数的变化使表面负电位增强时, 其他参数对负电位的影响将增强. 样品的带电稳态特征量在同一个电流平衡的模式下受参数影响的变化是单调的. 当电流平衡模式发生变化时, 如在入射电子能量较低的条件下, 样品内部的总电荷量会随着样品厚度的增大而先增加后减小, 出现局部极大值. 样品底部的泄漏电流密度随着入射电流密度的增大而近线性成比例地增大. 研究结果对于揭示电子辐照聚合物的带电规律及微观机理、预测不同条件下的样品带电状态具有重要科学意义.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回