搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究

颜小珍 邝小渝 毛爱杰 匡芳光 王振华 盛晓伟

高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究

颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟
PDF
导出引用
导出核心图
  • 采用密度泛函理论中的赝势平面波方法研究了高压下超导材料 ErNi2B2C 的弹性性质、电子结构和热力学性质.分析表明, 弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度(DOS)的计算结果显示, 在费米能级(EF)处的 DOS 峰随外界压强的增大显著降低, 由于 ErNi2B2C 相对较高的超导温度(Tc)起因于EF处的 DOS 峰, 因此推测压强增大可能会降低 ErNi2B2C 的 Tc.类似的现象在超导材料 MgB2和 SrAlSi 中已被发现.此外, 基于准谐德拜模型, 对 ErNi2B2C 在高温高压下的热力学性质的研究表明, 在一定范围内, 温度和压强将对其热膨胀系数和热容产生明显的影响.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11104190)、国家自然科学基金(批准号: 11274235)和高等学校博士学科点专项科研基金(批准号: 20100181110086, 20110181120112)资助的课题.
    [1]

    Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck Jr W F, Siegrist T, Batlogg B, van Dover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H, Uchida S 1994 Nature 367 252

    [2]

    Siegrist T, Zandbergen H W, Cava R J, Krajewski J J, Peck Jr W F 1994 Nature 367 254

    [3]

    Cho B K, Canfield P C, Johnston D C 1995 Phys. Rev. B 52 3844

    [4]

    Pickett W E, Singh D J 1994 Phys. Rev. Lett. 72 3702

    [5]

    Mattheiss L F 1994 Phys. Rev. B 49 13279

    [6]

    Hoellwarth C C, Klavins P, Shelton R N 1996 Phys. Rev. B 53 2579

    [7]

    Sánchez D R, Micklitz H, Baggio-Saitovitch E M 2005 Phys. Rev. B 71 024509

    [8]

    Canfield P C, Gammel P L, Bishop D J 1998 Phys. Today 51 40

    [9]

    Bud'ko S, Canfield P 2006 C. R. Phys. 7 56

    [10]

    Choi S M, Lynn J W, Lopez J W, Gammel P L, Canfield P C, Bud'ko S L 2001 Phys. Rev. Lett. 87 107001

    [11]

    Kawano-Furukawa H, Takeshita H, Ochiai M, Nagata T, Yoshizawa H, Furukawa N, Takeya H, Kadowaki K 2002 Phys. Rev. B 65 180508

    [12]

    Schmidt H, Braun H F 1994 Physica C 229 315

    [13]

    Alleno E, Neumeier J J, Thompson J D, Canfield P C, Cho B K 1995 Physica C 242 169

    [14]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [15]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [16]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 物理学报 60 117103]

    [19]

    Li S N, Liu Y 2010 Acta Phys. Sin. 59 6882 (in Chinese) [李世娜, 刘 永 2010 物理学报 59 6882]

    [20]

    Zhang W, Chen W Z, Wang J F, Zhang X D, Jiang Z Y 2012 Acta Phys. Sin. 61 246201 (in Chinese) [张 炜, 陈文周, 王俊斐, 张小东, 姜振益 2012 物理学报 61 246201]

    [21]

    Chen H C, Yang L J 2011 Acta Phys. Sin. 60 014207 (in Chinese) [陈海川, 杨利君 2011 物理学报 60 014207]

    [22]

    Blanco M A, Francisco E, Luana V 2004 Comp. Phys. Commun. 158 57

    [23]

    Lynn J W, Skanthakumar S, Huang Q, Sinha S K, Hossain Z, Gupta L C, Nagarajan R, Godart C 1997 Phys. Rev. B 55 6584

    [24]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [25]

    Chung D H, Buessem W R 1968 edited by Vahldiek F W, Mersol S A Anisotropy in Single Crystal Refractory Compound (Vol.2) (New York: Plenum) p217

    [26]

    Rourke P M C, Paglione J, Ronning F, Taillefer L, Kadowaki K 2003 Physica C 397 1

    [27]

    Meenakshi S, Vijayakumar V, Rao R S, Sikka B K, Ravindran P, Hossain Z, Nagarajan R, Gupta L C, Vijayaraghavan R 1998 Phys. Rev. B 58 3377

    [28]

    Weht R, Cappannini O M, Rodríguez C O, Christensen N E 1996 Physica C 260 125

    [29]

    Ravindran P, Fast L, PKorzhavyi. A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [30]

    Calegari E J, Magalhães S G, Chaves C M, Troper A 2011 Supercond. Sci. Technol. 24 035004

    [31]

    Wang Y C, Lü J, Ma Y M, Cui T, Zou G T 2009 Phys. Rev. B 80 092505

    [32]

    Lorenz B, Cmaidalka J, Meng R L, Chu C W 2003 Phys. Rev. B 68 014512

  • [1]

    Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck Jr W F, Siegrist T, Batlogg B, van Dover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H, Uchida S 1994 Nature 367 252

    [2]

    Siegrist T, Zandbergen H W, Cava R J, Krajewski J J, Peck Jr W F 1994 Nature 367 254

    [3]

    Cho B K, Canfield P C, Johnston D C 1995 Phys. Rev. B 52 3844

    [4]

    Pickett W E, Singh D J 1994 Phys. Rev. Lett. 72 3702

    [5]

    Mattheiss L F 1994 Phys. Rev. B 49 13279

    [6]

    Hoellwarth C C, Klavins P, Shelton R N 1996 Phys. Rev. B 53 2579

    [7]

    Sánchez D R, Micklitz H, Baggio-Saitovitch E M 2005 Phys. Rev. B 71 024509

    [8]

    Canfield P C, Gammel P L, Bishop D J 1998 Phys. Today 51 40

    [9]

    Bud'ko S, Canfield P 2006 C. R. Phys. 7 56

    [10]

    Choi S M, Lynn J W, Lopez J W, Gammel P L, Canfield P C, Bud'ko S L 2001 Phys. Rev. Lett. 87 107001

    [11]

    Kawano-Furukawa H, Takeshita H, Ochiai M, Nagata T, Yoshizawa H, Furukawa N, Takeya H, Kadowaki K 2002 Phys. Rev. B 65 180508

    [12]

    Schmidt H, Braun H F 1994 Physica C 229 315

    [13]

    Alleno E, Neumeier J J, Thompson J D, Canfield P C, Cho B K 1995 Physica C 242 169

    [14]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [15]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [16]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 物理学报 60 117103]

    [19]

    Li S N, Liu Y 2010 Acta Phys. Sin. 59 6882 (in Chinese) [李世娜, 刘 永 2010 物理学报 59 6882]

    [20]

    Zhang W, Chen W Z, Wang J F, Zhang X D, Jiang Z Y 2012 Acta Phys. Sin. 61 246201 (in Chinese) [张 炜, 陈文周, 王俊斐, 张小东, 姜振益 2012 物理学报 61 246201]

    [21]

    Chen H C, Yang L J 2011 Acta Phys. Sin. 60 014207 (in Chinese) [陈海川, 杨利君 2011 物理学报 60 014207]

    [22]

    Blanco M A, Francisco E, Luana V 2004 Comp. Phys. Commun. 158 57

    [23]

    Lynn J W, Skanthakumar S, Huang Q, Sinha S K, Hossain Z, Gupta L C, Nagarajan R, Godart C 1997 Phys. Rev. B 55 6584

    [24]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [25]

    Chung D H, Buessem W R 1968 edited by Vahldiek F W, Mersol S A Anisotropy in Single Crystal Refractory Compound (Vol.2) (New York: Plenum) p217

    [26]

    Rourke P M C, Paglione J, Ronning F, Taillefer L, Kadowaki K 2003 Physica C 397 1

    [27]

    Meenakshi S, Vijayakumar V, Rao R S, Sikka B K, Ravindran P, Hossain Z, Nagarajan R, Gupta L C, Vijayaraghavan R 1998 Phys. Rev. B 58 3377

    [28]

    Weht R, Cappannini O M, Rodríguez C O, Christensen N E 1996 Physica C 260 125

    [29]

    Ravindran P, Fast L, PKorzhavyi. A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [30]

    Calegari E J, Magalhães S G, Chaves C M, Troper A 2011 Supercond. Sci. Technol. 24 035004

    [31]

    Wang Y C, Lü J, Ma Y M, Cui T, Zou G T 2009 Phys. Rev. B 80 092505

    [32]

    Lorenz B, Cmaidalka J, Meng R L, Chu C W 2003 Phys. Rev. B 68 014512

  • [1] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [2] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [3] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [4] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [5] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [6] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [7] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [8] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [9] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [10] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [11] 宋仁伯, 杜大伟, 刘娜娜, 孙翰英. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [12] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [13] 杨利君, 陈海川. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [14] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [15] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [16] 翟东, 韦昭, 冯志芳, 邵晓红, 张平. 铜钨合金高温高压性质的第一性原理研究. 物理学报, 2014, 63(20): 206501. doi: 10.7498/aps.63.206501
    [17] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [18] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [19] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [20] 丁迎春, 潘洪哲, 沈益斌, 祝文军, 徐 明, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
  • 引用本文:
    Citation:
计量
  • 文章访问数:  689
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-06
  • 修回日期:  2012-12-26
  • 刊出日期:  2013-05-20

高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究

  • 1. 四川大学原子与分子物理研究所, 成都 610065
    基金项目: 

    国家自然科学基金青年科学基金(批准号: 11104190)、国家自然科学基金(批准号: 11274235)和高等学校博士学科点专项科研基金(批准号: 20100181110086, 20110181120112)资助的课题.

摘要: 采用密度泛函理论中的赝势平面波方法研究了高压下超导材料 ErNi2B2C 的弹性性质、电子结构和热力学性质.分析表明, 弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度(DOS)的计算结果显示, 在费米能级(EF)处的 DOS 峰随外界压强的增大显著降低, 由于 ErNi2B2C 相对较高的超导温度(Tc)起因于EF处的 DOS 峰, 因此推测压强增大可能会降低 ErNi2B2C 的 Tc.类似的现象在超导材料 MgB2和 SrAlSi 中已被发现.此外, 基于准谐德拜模型, 对 ErNi2B2C 在高温高压下的热力学性质的研究表明, 在一定范围内, 温度和压强将对其热膨胀系数和热容产生明显的影响.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回