搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究

侯清玉 董红英 马文 赵春旺

Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究

侯清玉, 董红英, 马文, 赵春旺
PDF
导出引用
  • 采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了纯的和四种不同Ga掺杂量的ZnO超胞模型, 分别对模型进行了几何结构优化、能带结构分布、态密度分布和吸收光谱的计算. 结果表明, 在本文限定的Ga掺杂量2.08 at%6.25 at%的范围内, 随着Ga掺杂量的增加, 掺杂后的ZnO体系体积变化不是很大, 但是, 掺杂体系ZnO的能量增加, 掺杂体系变得越来越不稳定, 同时, 掺杂体系ZnO的Burstein-Moss 效应越显著, 最小光学带隙变得越宽, 吸收带边越向高能方向移动. 计算结果和实验结果相一致.
    • 基金项目: 国家自然科学基金 (批准号: 51062012, 51062013, 51261017);教育部春晖计划项目、内蒙古自治区高等学校科学研究项目(批准号: NJZZ130099) 和内蒙古自治区自然科学基金 (批准号: 2010BS0604)资助的课题.
    [1]

    Srikant V, Clarke D R1998 J. App. Phys. 83 5447

    [2]

    Ma Q Z, Ye Z Z, He H P, Zhu L P, Liu W C, Yang Y F, Gong L, Huang J Y, Zhang Y Z, Zhang Y Z, Zhao B H 2008 J. Phys. D: Appl. Phys. 41 055302

    [3]

    Ma Q Z, He H P, Ye Z Z, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 J. Solid-State Chem. 181 525

    [4]

    Ma Q Z, Ye Z Z, He H P, Zhu L P, Wang J R, Zhao B H 2007 Mater. Lett. 61 2460

    [5]

    Ma Q Z, Ye Z Z, He H P, Wang J R, Zhu L P, Zhao B H 2008 Vacuum. 82 9

    [6]

    Ma Q Z, Ye Z Z, He H P, Wang J R, Zhu L P, Zhao B H 2008 Mater. Char. 59 124

    [7]

    Ma Q Z, Ye Z Z, He H P, Luo Y, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 Chem. Phys. Lett. 9 529

    [8]

    Zuo C Y, Wen J, Zhu S L, Zhong C 2010 Opt. Mater. 32 595

    [9]

    Xie F W, Yang P, Li P, Zhang L Q 2012Opt. Commun. 285 2660

    [10]

    Cheng X M, Chien C L 2003 J. Appl. Phys. 93 7876

    [11]

    Li P, Deng S H, Zhang L, Li Y B, Zhang X Y, Xu J R 2010 Comp Mater Sci. 50 153

    [12]

    Ma Q Z, Ye Z Z, He H P, Hu S H, Wang J R, Zhu L P, Zhang Y Z, Zhao B H 2007 J. Cryst. Growth 304 64

    [13]

    Rao T P, Kumar M C S 2010 J. Alloys Compd 506 788

    [14]

    Zhao J L, Sun X W, Ryu H, Moon Y B 2011 Opt. Mater 33 768

    [15]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [16]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J. Mat. Sci. 39 675

    [17]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604

    [18]

    Zhou K 2010 MD. Dissertation (Zhong Qing: College of Physics of Chongqing University, Chongqing, China) 39-44 (in Chinese) [周科 2010 硕士学位论文 (重庆: 重庆大学) 第39–44页]

    [19]

    Su H B, Dai J N, Pu YWang L L, Fang W Q, Jiang F Y 2006 J. Chin. J. Semicond. 27 1221 (in Chinese) [ 苏宏波, 戴江南, 蒲勇, 王立李, 方文卿, 江风益 2006 半导体学报 27 1221]

    [20]

    Goncalve A, SLima S A M, Davolos M R, Antônio S G, Santos C O P 2006 J. Solid State Chem. 179 1330

    [21]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [22]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [23]

    Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese) [侯清玉, 赵春旺, 金永军 2009 物理学报 58 7136]

    [24]

    Fang R C 2001 JSolid State Spectroscopy (He fei: University of Science and Technology of China Press) p68 (in Chinese) [方容川 2001 固体光谱学 (第二版)(合肥: 中国科学技术出版社) 第68页]

    [25]

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p140-141 (in Chinese) [沈学础 2002 半导体光谱和光学性质 (第二版) (北京: 科学出版社) 第140–141页]

  • [1]

    Srikant V, Clarke D R1998 J. App. Phys. 83 5447

    [2]

    Ma Q Z, Ye Z Z, He H P, Zhu L P, Liu W C, Yang Y F, Gong L, Huang J Y, Zhang Y Z, Zhang Y Z, Zhao B H 2008 J. Phys. D: Appl. Phys. 41 055302

    [3]

    Ma Q Z, He H P, Ye Z Z, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 J. Solid-State Chem. 181 525

    [4]

    Ma Q Z, Ye Z Z, He H P, Zhu L P, Wang J R, Zhao B H 2007 Mater. Lett. 61 2460

    [5]

    Ma Q Z, Ye Z Z, He H P, Wang J R, Zhu L P, Zhao B H 2008 Vacuum. 82 9

    [6]

    Ma Q Z, Ye Z Z, He H P, Wang J R, Zhu L P, Zhao B H 2008 Mater. Char. 59 124

    [7]

    Ma Q Z, Ye Z Z, He H P, Luo Y, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 Chem. Phys. Lett. 9 529

    [8]

    Zuo C Y, Wen J, Zhu S L, Zhong C 2010 Opt. Mater. 32 595

    [9]

    Xie F W, Yang P, Li P, Zhang L Q 2012Opt. Commun. 285 2660

    [10]

    Cheng X M, Chien C L 2003 J. Appl. Phys. 93 7876

    [11]

    Li P, Deng S H, Zhang L, Li Y B, Zhang X Y, Xu J R 2010 Comp Mater Sci. 50 153

    [12]

    Ma Q Z, Ye Z Z, He H P, Hu S H, Wang J R, Zhu L P, Zhang Y Z, Zhao B H 2007 J. Cryst. Growth 304 64

    [13]

    Rao T P, Kumar M C S 2010 J. Alloys Compd 506 788

    [14]

    Zhao J L, Sun X W, Ryu H, Moon Y B 2011 Opt. Mater 33 768

    [15]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [16]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J. Mat. Sci. 39 675

    [17]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 25604

    [18]

    Zhou K 2010 MD. Dissertation (Zhong Qing: College of Physics of Chongqing University, Chongqing, China) 39-44 (in Chinese) [周科 2010 硕士学位论文 (重庆: 重庆大学) 第39–44页]

    [19]

    Su H B, Dai J N, Pu YWang L L, Fang W Q, Jiang F Y 2006 J. Chin. J. Semicond. 27 1221 (in Chinese) [ 苏宏波, 戴江南, 蒲勇, 王立李, 方文卿, 江风益 2006 半导体学报 27 1221]

    [20]

    Goncalve A, SLima S A M, Davolos M R, Antônio S G, Santos C O P 2006 J. Solid State Chem. 179 1330

    [21]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [22]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [23]

    Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese) [侯清玉, 赵春旺, 金永军 2009 物理学报 58 7136]

    [24]

    Fang R C 2001 JSolid State Spectroscopy (He fei: University of Science and Technology of China Press) p68 (in Chinese) [方容川 2001 固体光谱学 (第二版)(合肥: 中国科学技术出版社) 第68页]

    [25]

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p140-141 (in Chinese) [沈学础 2002 半导体光谱和光学性质 (第二版) (北京: 科学出版社) 第140–141页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1497
  • PDF下载量:  660
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-07
  • 修回日期:  2013-04-07
  • 刊出日期:  2013-08-05

Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究

  • 1. 内蒙古工业大学理学院, 呼和浩特 010051;
  • 2. 内蒙古工业大学化工学院, 呼和浩特 010051;
  • 3. 内蒙古工业大学材料学院, 呼和浩特 010051
    基金项目: 

    国家自然科学基金 (批准号: 51062012, 51062013, 51261017)

    教育部春晖计划项目、内蒙古自治区高等学校科学研究项目(批准号: NJZZ130099) 和内蒙古自治区自然科学基金 (批准号: 2010BS0604)资助的课题.

摘要: 采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了纯的和四种不同Ga掺杂量的ZnO超胞模型, 分别对模型进行了几何结构优化、能带结构分布、态密度分布和吸收光谱的计算. 结果表明, 在本文限定的Ga掺杂量2.08 at%6.25 at%的范围内, 随着Ga掺杂量的增加, 掺杂后的ZnO体系体积变化不是很大, 但是, 掺杂体系ZnO的能量增加, 掺杂体系变得越来越不稳定, 同时, 掺杂体系ZnO的Burstein-Moss 效应越显著, 最小光学带隙变得越宽, 吸收带边越向高能方向移动. 计算结果和实验结果相一致.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回