搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2X(X=O,S,Se,Te)分子的双光子激发

王宏斌 蒋刚 朱正和 万明杰

H2X(X=O,S,Se,Te)分子的双光子激发

王宏斌, 蒋刚, 朱正和, 万明杰
PDF
导出引用
导出核心图
  • 本文采用全相对论量子力学计算了H2X (X=O, S, Se, Te) 分子的双光子过程, 并考虑相对论效应对双光子过程的影响. 结果表明, 各个不可约表示对称态下激发能有着明显的差异,它反应了双光子吸收过程中选择能级的特点. 同时, 采用非相对论的对称匹配簇/组态相互作用方法 (SAC-CI) 计算其分子的单光子激发, 并与之比较. 双光子跃迁概率要比单光子跃迁概率小2–5个数量级; 同一主族, 随着原子序数的增加, 相对论效应对分子体系的激发能量、跃迁概率、振子强度的大小都有显著地影响; 除此之外,每个分子遵守分子对称群的选择原则. 本文中, 分子H2X (X=O, S, Se, Te) 的个别不可约表示对称态的跃迁矩分量和振子强度远远大于其他对称态下的跃迁矩分量和振子强度, 甚至大于单光子激发. 这不仅与分子的对称性有一定的关系, 而且应该是选择双光子跃迁能级的重要依据.
    • 基金项目: 国家自然科学基金(批准号:11174213)资助的课题.
    [1]

    Wissert M D, Rudat B, Lemmer U 2011 Phys. Rev. B 83 113304

    [2]

    Xu H, Zhang C Y, Ma H, Liu S, Cheng D Y 2002 Pregress in chemistry 14 81 (in chinese) [徐慧, 张春阳, 马辉, 刘昇, 陈瓞延 2002 化学进展 14 81]

    [3]

    Kumar A, Trotsenko S, Volotka A V 2007 GSI Scientific Report 274

    [4]

    Zhu L Y, Yi L P, Shu Z G 2005 Journal of molecule science 21 1 (in chinese) [朱凌云, 易院平, 帅志刚 2005 分子科学学报 21 1]

    [5]

    Luo J F, Liang Z Q, Wang B, Liang X L, Ding P 2012 Journal of University of Science and Technology of Suzhou 25 28 (in Chinese) [罗建芳, 梁作芹, 王宝, 梁小龙, 丁平 2012 苏州科技学院学报 25 28]

    [6]

    Zhu Z H, Wang R, Gao T, Jiang G, Tang Y J, Xiong Y 2012 Journal of Atomic and Molecular Physics 27 1013 (in Chinese) [朱正和, 王蓉, 高涛, 蒋刚, 唐永健, 熊勇 2012 原子与分子物理学报 27 1013]

    [7]

    Zhu Z H, Meng D Q, Tang Y J, Wang M J 2012 Science China Press 42 392 (in Chinese) [朱正和, 蒙大桥, 唐永健, 万明杰 2012 中国科学杂志社 42 392]

    [8]

    Zhu Z H, Wang M J, Tang Y J, Meng D Q 2012 Acta Optical Sinica 32 1 (in Chinese) [朱正和, 万明杰, 唐永健, 蒙大桥 2012 光学学报 32 1]

    [9]

    Underwood J, Witing C 2004 Chemical. Physics. Lett. 386 190

    [10]

    Lin S H, Fujimura Y, Neusser H J, 1984 Multiphoton Spectroscopy of Molecules (New York: Academic Press) Chapter 2 p7

    [11]

    Connerade J P 1988 Highly Excited Atoms (Cambridge University Press) p323-334 (in Chinese) [詹明生, 王谨译 2003 高激发原子 (北京: 科学出版社) 第323–334页]

    [12]

    比约肯 J D, 德雷尔 S D 1985 Relativistic Quantum Mechanics (Beijing: Science Press) (in Chinese) [比约肯 J G, 德雷尔 S D 1985 相对论量子力学 (北京: 科学出版社)]

    [13]

    Saue T, Jensen H J A 2003 J. Chem. Phys. 118 522

    [14]

    Saue T, Helgaker T J 2002 J. Compu. Chem. 23 814

    [15]

    Zhu Z H 2007 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in chinese) [朱正和 2007 原子与分子静力学 (北京: 科学出版社)]

    [16]

    Jensen H J A, Saue T, Visscher L, DIRAC, a Relativistic ab intio Electronic Stracture Program, Rsleare DIRAC10 [CP]. 2010

    [17]

    Nakatsuji H, Ehara M 1993 J. Chem. Phys. 98 7179

    [18]

    Gou B C, Wu X L, Wang F 2007 Structure and spectrum of Atomic and molecule (Beijing: National Defence Industry Press) (in Chinese) [苟秉聪, 吴晓丽, 王菲 2007 原子与分子结构与光谱 (北京: 国防工业出版社)]

  • [1]

    Wissert M D, Rudat B, Lemmer U 2011 Phys. Rev. B 83 113304

    [2]

    Xu H, Zhang C Y, Ma H, Liu S, Cheng D Y 2002 Pregress in chemistry 14 81 (in chinese) [徐慧, 张春阳, 马辉, 刘昇, 陈瓞延 2002 化学进展 14 81]

    [3]

    Kumar A, Trotsenko S, Volotka A V 2007 GSI Scientific Report 274

    [4]

    Zhu L Y, Yi L P, Shu Z G 2005 Journal of molecule science 21 1 (in chinese) [朱凌云, 易院平, 帅志刚 2005 分子科学学报 21 1]

    [5]

    Luo J F, Liang Z Q, Wang B, Liang X L, Ding P 2012 Journal of University of Science and Technology of Suzhou 25 28 (in Chinese) [罗建芳, 梁作芹, 王宝, 梁小龙, 丁平 2012 苏州科技学院学报 25 28]

    [6]

    Zhu Z H, Wang R, Gao T, Jiang G, Tang Y J, Xiong Y 2012 Journal of Atomic and Molecular Physics 27 1013 (in Chinese) [朱正和, 王蓉, 高涛, 蒋刚, 唐永健, 熊勇 2012 原子与分子物理学报 27 1013]

    [7]

    Zhu Z H, Meng D Q, Tang Y J, Wang M J 2012 Science China Press 42 392 (in Chinese) [朱正和, 蒙大桥, 唐永健, 万明杰 2012 中国科学杂志社 42 392]

    [8]

    Zhu Z H, Wang M J, Tang Y J, Meng D Q 2012 Acta Optical Sinica 32 1 (in Chinese) [朱正和, 万明杰, 唐永健, 蒙大桥 2012 光学学报 32 1]

    [9]

    Underwood J, Witing C 2004 Chemical. Physics. Lett. 386 190

    [10]

    Lin S H, Fujimura Y, Neusser H J, 1984 Multiphoton Spectroscopy of Molecules (New York: Academic Press) Chapter 2 p7

    [11]

    Connerade J P 1988 Highly Excited Atoms (Cambridge University Press) p323-334 (in Chinese) [詹明生, 王谨译 2003 高激发原子 (北京: 科学出版社) 第323–334页]

    [12]

    比约肯 J D, 德雷尔 S D 1985 Relativistic Quantum Mechanics (Beijing: Science Press) (in Chinese) [比约肯 J G, 德雷尔 S D 1985 相对论量子力学 (北京: 科学出版社)]

    [13]

    Saue T, Jensen H J A 2003 J. Chem. Phys. 118 522

    [14]

    Saue T, Helgaker T J 2002 J. Compu. Chem. 23 814

    [15]

    Zhu Z H 2007 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in chinese) [朱正和 2007 原子与分子静力学 (北京: 科学出版社)]

    [16]

    Jensen H J A, Saue T, Visscher L, DIRAC, a Relativistic ab intio Electronic Stracture Program, Rsleare DIRAC10 [CP]. 2010

    [17]

    Nakatsuji H, Ehara M 1993 J. Chem. Phys. 98 7179

    [18]

    Gou B C, Wu X L, Wang F 2007 Structure and spectrum of Atomic and molecule (Beijing: National Defence Industry Press) (in Chinese) [苟秉聪, 吴晓丽, 王菲 2007 原子与分子结构与光谱 (北京: 国防工业出版社)]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1374
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-15
  • 修回日期:  2013-06-20
  • 刊出日期:  2013-10-05

H2X(X=O,S,Se,Te)分子的双光子激发

  • 1. 四川大学原子与分子物理研究所, 成都 610065
    基金项目: 

    国家自然科学基金(批准号:11174213)资助的课题.

摘要: 本文采用全相对论量子力学计算了H2X (X=O, S, Se, Te) 分子的双光子过程, 并考虑相对论效应对双光子过程的影响. 结果表明, 各个不可约表示对称态下激发能有着明显的差异,它反应了双光子吸收过程中选择能级的特点. 同时, 采用非相对论的对称匹配簇/组态相互作用方法 (SAC-CI) 计算其分子的单光子激发, 并与之比较. 双光子跃迁概率要比单光子跃迁概率小2–5个数量级; 同一主族, 随着原子序数的增加, 相对论效应对分子体系的激发能量、跃迁概率、振子强度的大小都有显著地影响; 除此之外,每个分子遵守分子对称群的选择原则. 本文中, 分子H2X (X=O, S, Se, Te) 的个别不可约表示对称态的跃迁矩分量和振子强度远远大于其他对称态下的跃迁矩分量和振子强度, 甚至大于单光子激发. 这不仅与分子的对称性有一定的关系, 而且应该是选择双光子跃迁能级的重要依据.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回