搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低雷达散射截面的超薄宽带完美吸波屏设计研究

李思佳 曹祥玉 高军 郑秋容 赵一 杨群

低雷达散射截面的超薄宽带完美吸波屏设计研究

李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群
PDF
导出引用
导出核心图
  • 提出了一种基于PMA单元结构的超薄宽带完美吸波屏设计方法. 该方法将多层拓展带宽的技术与单层多谐振方法有机结合, 实现带宽拓展的同时, 保持了完美吸波屏结构简单、无集总元件的特点, 易于实际加工和应用. 以双层三谐振超薄宽带完美吸波屏为例, 结合其等效电路, 理论上验证了所设计吸波屏的吸波机理, 同时验证了方法的有效性. 仿真分析该吸波屏具有低雷达散射截面、极化不敏感和宽入射角的特征. 仿真和实测结果表明: 该吸波屏在厚度为0.01 λ的条件下, 具有14.1%的半波功率带宽;-3 dBsm的雷达散射截面缩减带宽为18.9%, 在法线方向的最大缩减量为23 dBsm, 在法向±40°内具有较好的雷达散射截面减缩效果.
    • 基金项目: 国家自然科学基金(批准号:61271100);中国博士后科学基金(批准号:20100481497);陕西省自然科学基金重点项目(批准号:2010JZ010)和陕西省自然科学基础研究计划(批准号:2012JM8003)资助的课题.
    [1]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhu B, Wang Z, Huang C, Feng Y 2010 Progress In Electromagnetics Research 10 231

    [3]

    Chen H T 2012 Opt. Express 62 7165

    [4]

    Cheng Y Z, Nie Y, Gong R Z 2013 Optica and Laser Tech. 48 415

    [5]

    Hu T, Bingham C M, Strikwerda A C, Landy N I 2008 Phys. Rev. B 78 241103

    [6]

    Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progress in Electromagnetics Lett. 17 171

    [7]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [8]

    Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [9]

    Hu T, Bingham C M, Pilon D, Kebin F 2010 J. Phys. D Appl. Phys. 43 225102

    [10]

    Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387

    [11]

    Gu S, Barrett J P, Hand T H, Popa B I, Cummer S A 2010 J. Appl. Phys. 108 064913

    [12]

    Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902

    [13]

    Lee J, Lim S 2011 Electron. Lett. 47 8

    [14]

    Li S J, Cao Y Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 物理学报 62 124101]

    [15]

    Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506

    [16]

    Pham V T, Park J W, Vu D L 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001

    [17]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2013 IEEE Trans. Antennas Propag. 61 2327

    [19]

    Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3310

    [20]

    Costa F, Genovesi S, Monorchio A 2013 IEEE Trans. Antennas Propag. 61 1201

    [21]

    Costa F. Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propagat. 58 1551

    [22]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370

  • [1]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhu B, Wang Z, Huang C, Feng Y 2010 Progress In Electromagnetics Research 10 231

    [3]

    Chen H T 2012 Opt. Express 62 7165

    [4]

    Cheng Y Z, Nie Y, Gong R Z 2013 Optica and Laser Tech. 48 415

    [5]

    Hu T, Bingham C M, Strikwerda A C, Landy N I 2008 Phys. Rev. B 78 241103

    [6]

    Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progress in Electromagnetics Lett. 17 171

    [7]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [8]

    Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [9]

    Hu T, Bingham C M, Pilon D, Kebin F 2010 J. Phys. D Appl. Phys. 43 225102

    [10]

    Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387

    [11]

    Gu S, Barrett J P, Hand T H, Popa B I, Cummer S A 2010 J. Appl. Phys. 108 064913

    [12]

    Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902

    [13]

    Lee J, Lim S 2011 Electron. Lett. 47 8

    [14]

    Li S J, Cao Y Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 物理学报 62 124101]

    [15]

    Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506

    [16]

    Pham V T, Park J W, Vu D L 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001

    [17]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2013 IEEE Trans. Antennas Propag. 61 2327

    [19]

    Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3310

    [20]

    Costa F, Genovesi S, Monorchio A 2013 IEEE Trans. Antennas Propag. 61 1201

    [21]

    Costa F. Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propagat. 58 1551

    [22]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1398
  • PDF下载量:  973
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-21
  • 修回日期:  2013-06-30
  • 刊出日期:  2013-10-05

低雷达散射截面的超薄宽带完美吸波屏设计研究

  • 1. 空军工程大学信息与导航学院, 西安 710077
    基金项目: 

    国家自然科学基金(批准号:61271100)

    中国博士后科学基金(批准号:20100481497)

    陕西省自然科学基金重点项目(批准号:2010JZ010)和陕西省自然科学基础研究计划(批准号:2012JM8003)资助的课题.

摘要: 提出了一种基于PMA单元结构的超薄宽带完美吸波屏设计方法. 该方法将多层拓展带宽的技术与单层多谐振方法有机结合, 实现带宽拓展的同时, 保持了完美吸波屏结构简单、无集总元件的特点, 易于实际加工和应用. 以双层三谐振超薄宽带完美吸波屏为例, 结合其等效电路, 理论上验证了所设计吸波屏的吸波机理, 同时验证了方法的有效性. 仿真分析该吸波屏具有低雷达散射截面、极化不敏感和宽入射角的特征. 仿真和实测结果表明: 该吸波屏在厚度为0.01 λ的条件下, 具有14.1%的半波功率带宽;-3 dBsm的雷达散射截面缩减带宽为18.9%, 在法线方向的最大缩减量为23 dBsm, 在法向±40°内具有较好的雷达散射截面减缩效果.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回