搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计

王海啸 郑新和 吴渊渊 甘兴源 王乃明 杨辉

1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计

王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉
PDF
导出引用
导出核心图
  • 使用In, N分离的GaInAs/GaNAs超晶格作为有源区是实现高质量1eV带隙 GaInNAs基太阳能电池的重要方案之一. 为在实验上生长出高质量相应吸收带边的超晶格结构, 本文采用计算超晶格电子态常用的Kronig-Penney模型比较了不同阱层材料选择下, 吸收带边为1 eV的GaInAs/GaNAs超晶格相关参数的对应关系以及超晶格应变状态. 结果表明: GaNAs与GaInAs作为超晶格阱层材料在实现1 eV的吸收带边时具有不同的考虑和要求; 在固定1 eV的吸收带边时, GaNAs材料作为阱层可获得较好的超晶格应变补偿, 将有利于生长高质量且充分吸收的太阳能电池有源区.
    • 基金项目: 国家自然科学基金(批准号: 61274134)和苏州市国际合作项目(批准号: SH201215)资助的课题.
    [1]

    Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273

    [2]

    Kurtz S R, Myers D, Olson J M 1997 Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, 29 Sep–3 Oct 1997, p 875

    [3]

    Zhao J, Zeng Y P 2011 Physics 4 233 (in Chinese) [赵杰, 曾一平 2011 物理 4 233]

    [4]

    Kong X, Trampert A, Tournie E, Ploog K H 2005 Appl. Phys. Lett. 87 171901

    [5]

    Oshima R, Huang J, Miyashita N, Matsubara K, Okada Y, Ponce F 2011 Appl. Phys. Lett. 99 191907

    [6]

    Miyamoto T, Sato S, Pan Z, Schlenker D, Koyama F, Iga K 1998 J. Cryst Growth. 195 421

    [7]

    Hong Y G, Tu C W, Ahrenkiel R K 2001 J Cryst Growth. 227–228 536

    [8]

    Hong Y G, Egorov A Y, Tu C W 2002 J. Vac. Sci. Technol B 20 1163

    [9]

    Wu P H, Su Y K, Yen C T, Hong H F, Chu K Y, Chen Y R 2007 Semicond Sci. Tech. 22 549

    [10]

    Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2006 Jpn. J. Appl. Phys. 45 L647

    [11]

    Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2007 Physica Status Solidi (c) 4 2854

    [12]

    Wang H X, Zheng X H, Wen Y, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Scientia Sinica Pysica, Mechanica & Astronomica 43 930 (in Chinese) [王海啸, 郑新和, 文瑜, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 中国科学: 物理学 力学 天文学 43 930]

    [13]

    Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H, Yang H 2013 Chin. Phys. B 22 068802

    [14]

    Esaki L, Tsu R 1970 IBM Journal of Research and Development. 14 61

    [15]

    Lu W, Xue M, Wei Y, He L 2011 Acta Phys. Sin. 60 87807 (in Chinese) [芦伟, 徐明, 魏屹, 何林 2011 物理学报 60 87807]

    [16]

    Tisch U, Finkman E, Salzman J 2002 Appl. Phys. Lett. 81 463

    [17]

    Niki S, Lin C L, Chang W S C, Wieder H H 1989 Appl. Phys. Lett. 55 1339

  • [1]

    Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273

    [2]

    Kurtz S R, Myers D, Olson J M 1997 Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, 29 Sep–3 Oct 1997, p 875

    [3]

    Zhao J, Zeng Y P 2011 Physics 4 233 (in Chinese) [赵杰, 曾一平 2011 物理 4 233]

    [4]

    Kong X, Trampert A, Tournie E, Ploog K H 2005 Appl. Phys. Lett. 87 171901

    [5]

    Oshima R, Huang J, Miyashita N, Matsubara K, Okada Y, Ponce F 2011 Appl. Phys. Lett. 99 191907

    [6]

    Miyamoto T, Sato S, Pan Z, Schlenker D, Koyama F, Iga K 1998 J. Cryst Growth. 195 421

    [7]

    Hong Y G, Tu C W, Ahrenkiel R K 2001 J Cryst Growth. 227–228 536

    [8]

    Hong Y G, Egorov A Y, Tu C W 2002 J. Vac. Sci. Technol B 20 1163

    [9]

    Wu P H, Su Y K, Yen C T, Hong H F, Chu K Y, Chen Y R 2007 Semicond Sci. Tech. 22 549

    [10]

    Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2006 Jpn. J. Appl. Phys. 45 L647

    [11]

    Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2007 Physica Status Solidi (c) 4 2854

    [12]

    Wang H X, Zheng X H, Wen Y, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Scientia Sinica Pysica, Mechanica & Astronomica 43 930 (in Chinese) [王海啸, 郑新和, 文瑜, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 中国科学: 物理学 力学 天文学 43 930]

    [13]

    Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H, Yang H 2013 Chin. Phys. B 22 068802

    [14]

    Esaki L, Tsu R 1970 IBM Journal of Research and Development. 14 61

    [15]

    Lu W, Xue M, Wei Y, He L 2011 Acta Phys. Sin. 60 87807 (in Chinese) [芦伟, 徐明, 魏屹, 何林 2011 物理学报 60 87807]

    [16]

    Tisch U, Finkman E, Salzman J 2002 Appl. Phys. Lett. 81 463

    [17]

    Niki S, Lin C L, Chang W S C, Wieder H H 1989 Appl. Phys. Lett. 55 1339

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1032
  • PDF下载量:  666
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-16
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-11-05

1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计

  • 1. 中国科学院苏州纳米技术与纳米仿生研究所, 纳米器件与应用重点实验室, 苏州 215123;
  • 2. 中国科学院大学, 北京 100080
    基金项目: 

    国家自然科学基金(批准号: 61274134)和苏州市国际合作项目(批准号: SH201215)资助的课题.

摘要: 使用In, N分离的GaInAs/GaNAs超晶格作为有源区是实现高质量1eV带隙 GaInNAs基太阳能电池的重要方案之一. 为在实验上生长出高质量相应吸收带边的超晶格结构, 本文采用计算超晶格电子态常用的Kronig-Penney模型比较了不同阱层材料选择下, 吸收带边为1 eV的GaInAs/GaNAs超晶格相关参数的对应关系以及超晶格应变状态. 结果表明: GaNAs与GaInAs作为超晶格阱层材料在实现1 eV的吸收带边时具有不同的考虑和要求; 在固定1 eV的吸收带边时, GaNAs材料作为阱层可获得较好的超晶格应变补偿, 将有利于生长高质量且充分吸收的太阳能电池有源区.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回