搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于节点度信息的自愿免疫模型研究

胡兆龙 刘建国 任卓明

基于节点度信息的自愿免疫模型研究

胡兆龙, 刘建国, 任卓明
PDF
导出引用
导出核心图
  • 疾病的广泛传播给人类带来了巨大的损失, 因此抑制疾病的传播非常重要. 本文考虑了个体接种疫苗意愿的差异性, 并结合博弈理论建立了一个基于节点度信息的自愿免疫模型. 理论解析结果证明当感染率超过某个阈值时, 该模型与忽略个体接种意愿差异性的经典模型(Zhang et al 2010 New J. Phys. 12 023015) 传播效果(感染节点数)一样. 继而考虑疫苗永久有效和有效期有限两种情况, 在Barabási-Albert网络中利用SIS传播模型对疾病的传播进程进行了数值模拟, 发现数值模拟结果与理论解析结果非常符合. 实验证明, 当感染耗费和接种疫苗耗费相同时, 该模型比忽略个体接种意愿差异性的经典模型能够更好的抑制疾病的传播, 且感染人数下降比例超过65%, 更重要的是,疫苗有效期越长本文的模型 (与忽略个体接种意愿差异性的经典模型相比)抑制疾病传播效果越好.
    • 基金项目: 国家自然科学基金(批准号: 91024026, 71071098, 71171136)、上海市科研创新基金(批准号: 11ZZ135, 11YZ110)、教育部科学技术研究重点项目(批准号: 211057)、上海市一流科学建设项目(批准号: XTKX2012)和上海市研究生创新基金(批准号: JWCXSL1202)资助的课题.
    [1]

    Ma Z N, Zhou Y C, Wang W D 2004 The mathematical modeling and research on dynamics of infectious diseases (Beijing: science press) pp1–5 (in Chinese) [马知恩, 周义仓, 王稳地 2004 传染病动力学的数学建模与研究(北京: 科学出版社) 第1–5页]

    [2]

    Meyers L A, Pourbohloul B, Newman M E J, Skowronski D M, Brunham R C 2005 J. Theor. Biol. 232 71

    [3]

    Li X, Wang X F 2006 IEEE Trans. Automat. Control 51 534

    [4]

    Liu J G, Wu Z X, Wang F 2007 Int. J. Mod. Phys. C 18 1087

    [5]

    Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

    [6]

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901 (in Chinese) [任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901]

    [7]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [8]

    Hu Q C, Yin Y S, Ma P F, Zhang Y, Xing C X 2013 Acta Phys. Sin. 62 140101 (in Chinese) [庆成, 尹龑燊, 马鹏, 斐高旸, 张勇, 邢春晓 2013 物理学报 62 140101]

    [9]

    Ren Z M, Liu J G, Shao F, Hu Z L, Guo Q 2013 Acta Phys. Sin. 62 108902 (in Chinese) [任卓明, 刘建国, 邵凤, 胡兆龙, 郭强 2013 物理学报 62 108902]

    [10]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [11]

    Mller J, Schönfisch B, Kirkilionis M 2000 J. Math. Biol. 41 143

    [12]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [13]

    Cohen R, Havlin S, Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901

    [14]

    Salathé M, Jones J H 2010 PLoS Comput. Biol. 6(4) 1000736

    [15]

    Jiang Z H, Wang H, Gao C 2011 Acta Phys. Sin. 60 058903 (in Chinese) [姜志宏, 王晖, 高超 2011 物理学报 60 58903]

    [16]

    Bauch C T 2005 Proc. R. Soc. B 272 1669

    [17]

    Wang Y Q, J G P 2010 Acta Phys. Sin. 59 6734 (in Chinese) [王亚奇, 蒋国平 2010 物理学报 59 6734]

    [18]

    Perisic A, Bauch C T 2009 BMC Infect. Dis. 9 77

    [19]

    Dushoff J, Plotkin J B, Levin S A, Earn D J D 2004 Proc. Natl Acad. Sci. USA 101 16915

    [20]

    Fu F, Rosenbloom D I, Wang L, Nawak M A 2011 Proc. R. Soc. B 278 42

    [21]

    Bauch C T, Galvani A P, Earn D J D 2003 Proc. Natl Acad. Sci. USA 100 10564

    [22]

    Zhang H, Zhang J, Zhou C, Small M, Wang B 2010 New J. Phys. 12 023015

    [23]

    Anderson R M, May R M, Anderson B 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford : Oxford Science Publications) p66

    [24]

    Zhou T, Liu J G, Bai W J, Chen G R, Wang B H 2006 Phys. Rev. E 74 056109

    [25]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [26]

    Shi H J, Duan Z S, Chen G R, Li R 2009 Chin. Phys. B 18 3309

  • [1]

    Ma Z N, Zhou Y C, Wang W D 2004 The mathematical modeling and research on dynamics of infectious diseases (Beijing: science press) pp1–5 (in Chinese) [马知恩, 周义仓, 王稳地 2004 传染病动力学的数学建模与研究(北京: 科学出版社) 第1–5页]

    [2]

    Meyers L A, Pourbohloul B, Newman M E J, Skowronski D M, Brunham R C 2005 J. Theor. Biol. 232 71

    [3]

    Li X, Wang X F 2006 IEEE Trans. Automat. Control 51 534

    [4]

    Liu J G, Wu Z X, Wang F 2007 Int. J. Mod. Phys. C 18 1087

    [5]

    Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

    [6]

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901 (in Chinese) [任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901]

    [7]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [8]

    Hu Q C, Yin Y S, Ma P F, Zhang Y, Xing C X 2013 Acta Phys. Sin. 62 140101 (in Chinese) [庆成, 尹龑燊, 马鹏, 斐高旸, 张勇, 邢春晓 2013 物理学报 62 140101]

    [9]

    Ren Z M, Liu J G, Shao F, Hu Z L, Guo Q 2013 Acta Phys. Sin. 62 108902 (in Chinese) [任卓明, 刘建国, 邵凤, 胡兆龙, 郭强 2013 物理学报 62 108902]

    [10]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [11]

    Mller J, Schönfisch B, Kirkilionis M 2000 J. Math. Biol. 41 143

    [12]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [13]

    Cohen R, Havlin S, Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901

    [14]

    Salathé M, Jones J H 2010 PLoS Comput. Biol. 6(4) 1000736

    [15]

    Jiang Z H, Wang H, Gao C 2011 Acta Phys. Sin. 60 058903 (in Chinese) [姜志宏, 王晖, 高超 2011 物理学报 60 58903]

    [16]

    Bauch C T 2005 Proc. R. Soc. B 272 1669

    [17]

    Wang Y Q, J G P 2010 Acta Phys. Sin. 59 6734 (in Chinese) [王亚奇, 蒋国平 2010 物理学报 59 6734]

    [18]

    Perisic A, Bauch C T 2009 BMC Infect. Dis. 9 77

    [19]

    Dushoff J, Plotkin J B, Levin S A, Earn D J D 2004 Proc. Natl Acad. Sci. USA 101 16915

    [20]

    Fu F, Rosenbloom D I, Wang L, Nawak M A 2011 Proc. R. Soc. B 278 42

    [21]

    Bauch C T, Galvani A P, Earn D J D 2003 Proc. Natl Acad. Sci. USA 100 10564

    [22]

    Zhang H, Zhang J, Zhou C, Small M, Wang B 2010 New J. Phys. 12 023015

    [23]

    Anderson R M, May R M, Anderson B 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford : Oxford Science Publications) p66

    [24]

    Zhou T, Liu J G, Bai W J, Chen G R, Wang B H 2006 Phys. Rev. E 74 056109

    [25]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [26]

    Shi H J, Duan Z S, Chen G R, Li R 2009 Chin. Phys. B 18 3309

  • [1] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析. 物理学报, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [2] 舒盼盼, 王伟, 唐明, 尚明生. 花簇分形无标度网络中节点影响力的区分度. 物理学报, 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [3] 郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月. 一种无线传感器网络健壮性可调的能量均衡拓扑控制算法. 物理学报, 2015, 64(8): 080101. doi: 10.7498/aps.64.080101
    [4] 黄斌, 赵翔宇, 齐凯, 唐明, 都永海. 复杂网络的顶点着色及其在疾病免疫中的应用. 物理学报, 2013, 62(21): 218902. doi: 10.7498/aps.62.218902
    [5] 吕天阳, 朴秀峰, 谢文艳, 黄少滨. 基于传播免疫的复杂网络可控性研究. 物理学报, 2012, 61(17): 170512. doi: 10.7498/aps.61.170512
    [6] 杨小帆, 钟 将, 温罗生. 在二部无标度网上的两性疾病传播. 物理学报, 2008, 57(8): 4794-4799. doi: 10.7498/aps.57.4794
    [7] 杨慧, 唐明, 蔡世民, 周涛. 异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用. 物理学报, 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [8] 胡耀光, 王圣军, 金涛, 屈世显. 度关联无标度网络上的有倾向随机行走. 物理学报, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [9] 王亚奇, 蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究. 物理学报, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [10] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  486
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-28
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-11-05

基于节点度信息的自愿免疫模型研究

  • 1. 上海理工大学复杂系统科学研究中心, 上海 200093
    基金项目: 

    国家自然科学基金(批准号: 91024026, 71071098, 71171136)、上海市科研创新基金(批准号: 11ZZ135, 11YZ110)、教育部科学技术研究重点项目(批准号: 211057)、上海市一流科学建设项目(批准号: XTKX2012)和上海市研究生创新基金(批准号: JWCXSL1202)资助的课题.

摘要: 疾病的广泛传播给人类带来了巨大的损失, 因此抑制疾病的传播非常重要. 本文考虑了个体接种疫苗意愿的差异性, 并结合博弈理论建立了一个基于节点度信息的自愿免疫模型. 理论解析结果证明当感染率超过某个阈值时, 该模型与忽略个体接种意愿差异性的经典模型(Zhang et al 2010 New J. Phys. 12 023015) 传播效果(感染节点数)一样. 继而考虑疫苗永久有效和有效期有限两种情况, 在Barabási-Albert网络中利用SIS传播模型对疾病的传播进程进行了数值模拟, 发现数值模拟结果与理论解析结果非常符合. 实验证明, 当感染耗费和接种疫苗耗费相同时, 该模型比忽略个体接种意愿差异性的经典模型能够更好的抑制疾病的传播, 且感染人数下降比例超过65%, 更重要的是,疫苗有效期越长本文的模型 (与忽略个体接种意愿差异性的经典模型相比)抑制疾病传播效果越好.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回