搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种平行栅碳纳米管阵列阴极的场发射特性研究

雷达 孟根其其格 张荷亮 智颖飙

一种平行栅碳纳米管阵列阴极的场发射特性研究

雷达, 孟根其其格, 张荷亮, 智颖飙
PDF
导出引用
  • 建立一种平行栅碳纳米管阵列阴极,利用悬浮球模型和镜像电荷法进行计算,给出碳纳米管顶端表面电场与电场增强因子的解析式. 在此基础上,进一步分析器件各类参数以及接触电阻对阴极电子发射性能的影响. 分析表明,碳纳米管间距大约为2倍碳纳米管高度时阵列阴极的分布密度最佳,靠边缘部位的碳纳米管发射电子能力比其中心部位的大;除碳纳米管的长径比之外,栅极宽度和栅极间距也对电场增强因子有一定作用;接触电阻的存在大幅度降低碳纳米管顶端表面电场与发射电流,而接触电阻高于800 kΩ时,器件对阳极驱动电压的要求更高.
    • 基金项目: 国家自然科学基金(批准号:61261004)资助的课题.
    [1]

    Ijima S, Ichihashi T 1993 Nature 363 603

    [2]

    Milne W I, Teo K B K, Chhowalla M, Amaratunga G A J, Pribat D, Legagneux P, Pirio G, Vu T B, Semet V 2002 Curt. Appl. Phys. 2 509

    [3]

    Chen Q, Dai L 2001 J. Nanosci. Nanotech. 1 43

    [4]

    Xu X P, Brandes G R 1999 Appl. Phys. Lett. 74 2549

    [5]

    Lee Y H, Jang Y T, Kim D H, Ahn J H, Ju B 200l Adv. Mater. 13 479

    [6]

    Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S, Yan Y 2012 Acta Phys. Sin. 61 216101 (in Chinese) [袁学松, 张宇, 孙利民, 黎晓云, 邓少芝,许宁生, 鄢扬 2012 物理学报 61 216101]

    [7]

    Park J H, Son G H, Moon J S, Han J H, Berdinsky A S, Kuvshinov D G, Yoo J B, Park C Y 2005 J. Vac. Sci. Technol. B 23 749

    [8]

    Chen L F, Wang L, Yu X G, Zhang S J, Li D, Xu C 2013 Appl. Surf. Sci. 265 187

    [9]

    Ye Y, Xiao X J, Guo T L, Li W Z, Jiang Y D 2012 J. Functional Mater. 43 1221 (in Chinese) [叶芸, 肖晓晶, 郭太良, 李威志, 蒋亚东 2012 功能材料 43 1221]

    [10]

    Chung D S, Park S H, Lee H W, Choi J H, Cha S N, Kim J W, Jang J E, Min K W, Cho S H, Yoon M J, Lee J S, Lee C K, Yoo J H, Kim J M, Jung J E, Jin Y W, Park Y J, You J B 2002 Appl. Phys. Lett. 80 4045

    [11]

    Gao Y B, Zhang X B Lei W, Liu M, Zhang Y N, den Daniel E 2005 Appl. Surf. Sci. 243 19

    [12]

    Zhang Y A, Lin J Y, Wu C X, Zheng Y, Lin Z X, Guo T L 2011 J. Functional Mater. 42 1130 (in Chinese) [张永爱, 林金阳, 吴朝兴, 郑勇, 林志贤, 郭太良 2011 功能材料 42 1130]

    [13]

    Zhao X X, Zhang G M 2002 J. Vac. Sci. Technol. 22 358 (in Chinese) [赵晓雪, 张耿民 2002 真空科学与技术学报 22 358]

    [14]

    Nicolaescu D, Filip V, Kanemaru S, Itoh J 2003 J. Vac. Sci. Technol. B 21 366

    [15]

    Lei D, Wang W B, Zeng L Y, Liang J Q 2009 Acta Phys. Sin. 58 3384 (in Chinese) [雷达, 王维彪, 曾乐勇, 梁静秋 2009 物理学报 58 3384]

    [16]

    Lei D, Zeng L Y, Xia Y X, Chen S, Liang J Q, Wang W B 2007 Acta Phys. Sin. 56 6616 (in Chinese) [雷达, 曾乐勇, 夏玉学, 陈松, 梁静秋, 王维彪 2007 物理学报 56 6616]

    [17]

    Zhu Y B, Wang W L, Liao K J 2002 Acta Phys. Sin. 51 2336 (in Chinese) [朱亚波, 王万录, 廖克俊 2002 物理学报 51 2336]

    [18]

    Dai J F, Mu X W, Qiao X W, Chen X X, Wang J H 2010 Chin. Phys. B 19 057201

    [19]

    Wang X Q, Li L, Chu N J, Jin H X, Ge H L 2008 Acta Phys. Sin. 57 7173 (in Chinese) [王新庆, 李良, 褚宁杰, 金红晓, 葛洪良 2008 物理学报 57 7173]

    [20]

    Pan J Y, Zhang W Y, Gao Y L 2010 Acta Phys. Sin. 59 8763 (in Chinese) [潘金艳, 张文彦, 高云龙 2010 物理学报 59 8763]

    [21]

    Fowler R H, Nordheim D L 2003 Proc. Roy. Soc. (London) A 119 173

    [22]

    Miller H C 1967 J. Appl. Phys. 38 1450

    [23]

    Wang X Q, Wang M, Li Z H, Xu Y B, He P M 2005 Ultramicroscopy 102 181

    [24]

    L W H, Zhang S 2012 Acta Phys. Sin. 61 018801 (in Chinese) [吕文辉, 张帅 2012 物理学报 61 018801]

    [25]

    She J C, Xu N S, Deng S Z, Chen J, Bishpo H, Huq S E, Wang L, Zhong D Y, Wang E G 2003 Appl. Phys. Lett. 83 2671

  • [1]

    Ijima S, Ichihashi T 1993 Nature 363 603

    [2]

    Milne W I, Teo K B K, Chhowalla M, Amaratunga G A J, Pribat D, Legagneux P, Pirio G, Vu T B, Semet V 2002 Curt. Appl. Phys. 2 509

    [3]

    Chen Q, Dai L 2001 J. Nanosci. Nanotech. 1 43

    [4]

    Xu X P, Brandes G R 1999 Appl. Phys. Lett. 74 2549

    [5]

    Lee Y H, Jang Y T, Kim D H, Ahn J H, Ju B 200l Adv. Mater. 13 479

    [6]

    Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S, Yan Y 2012 Acta Phys. Sin. 61 216101 (in Chinese) [袁学松, 张宇, 孙利民, 黎晓云, 邓少芝,许宁生, 鄢扬 2012 物理学报 61 216101]

    [7]

    Park J H, Son G H, Moon J S, Han J H, Berdinsky A S, Kuvshinov D G, Yoo J B, Park C Y 2005 J. Vac. Sci. Technol. B 23 749

    [8]

    Chen L F, Wang L, Yu X G, Zhang S J, Li D, Xu C 2013 Appl. Surf. Sci. 265 187

    [9]

    Ye Y, Xiao X J, Guo T L, Li W Z, Jiang Y D 2012 J. Functional Mater. 43 1221 (in Chinese) [叶芸, 肖晓晶, 郭太良, 李威志, 蒋亚东 2012 功能材料 43 1221]

    [10]

    Chung D S, Park S H, Lee H W, Choi J H, Cha S N, Kim J W, Jang J E, Min K W, Cho S H, Yoon M J, Lee J S, Lee C K, Yoo J H, Kim J M, Jung J E, Jin Y W, Park Y J, You J B 2002 Appl. Phys. Lett. 80 4045

    [11]

    Gao Y B, Zhang X B Lei W, Liu M, Zhang Y N, den Daniel E 2005 Appl. Surf. Sci. 243 19

    [12]

    Zhang Y A, Lin J Y, Wu C X, Zheng Y, Lin Z X, Guo T L 2011 J. Functional Mater. 42 1130 (in Chinese) [张永爱, 林金阳, 吴朝兴, 郑勇, 林志贤, 郭太良 2011 功能材料 42 1130]

    [13]

    Zhao X X, Zhang G M 2002 J. Vac. Sci. Technol. 22 358 (in Chinese) [赵晓雪, 张耿民 2002 真空科学与技术学报 22 358]

    [14]

    Nicolaescu D, Filip V, Kanemaru S, Itoh J 2003 J. Vac. Sci. Technol. B 21 366

    [15]

    Lei D, Wang W B, Zeng L Y, Liang J Q 2009 Acta Phys. Sin. 58 3384 (in Chinese) [雷达, 王维彪, 曾乐勇, 梁静秋 2009 物理学报 58 3384]

    [16]

    Lei D, Zeng L Y, Xia Y X, Chen S, Liang J Q, Wang W B 2007 Acta Phys. Sin. 56 6616 (in Chinese) [雷达, 曾乐勇, 夏玉学, 陈松, 梁静秋, 王维彪 2007 物理学报 56 6616]

    [17]

    Zhu Y B, Wang W L, Liao K J 2002 Acta Phys. Sin. 51 2336 (in Chinese) [朱亚波, 王万录, 廖克俊 2002 物理学报 51 2336]

    [18]

    Dai J F, Mu X W, Qiao X W, Chen X X, Wang J H 2010 Chin. Phys. B 19 057201

    [19]

    Wang X Q, Li L, Chu N J, Jin H X, Ge H L 2008 Acta Phys. Sin. 57 7173 (in Chinese) [王新庆, 李良, 褚宁杰, 金红晓, 葛洪良 2008 物理学报 57 7173]

    [20]

    Pan J Y, Zhang W Y, Gao Y L 2010 Acta Phys. Sin. 59 8763 (in Chinese) [潘金艳, 张文彦, 高云龙 2010 物理学报 59 8763]

    [21]

    Fowler R H, Nordheim D L 2003 Proc. Roy. Soc. (London) A 119 173

    [22]

    Miller H C 1967 J. Appl. Phys. 38 1450

    [23]

    Wang X Q, Wang M, Li Z H, Xu Y B, He P M 2005 Ultramicroscopy 102 181

    [24]

    L W H, Zhang S 2012 Acta Phys. Sin. 61 018801 (in Chinese) [吕文辉, 张帅 2012 物理学报 61 018801]

    [25]

    She J C, Xu N S, Deng S Z, Chen J, Bishpo H, Huq S E, Wang L, Zhong D Y, Wang E G 2003 Appl. Phys. Lett. 83 2671

  • [1] 雷达, 王维彪, 曾乐勇, 梁静秋. 栅极调制纳米线的场增强因子计算. 物理学报, 2009, 58(5): 3383-3389. doi: 10.7498/aps.58.3383
    [2] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [3] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究. 物理学报, 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [4] 王 淼, 尚学府, 李振华, 王新庆, 徐亚伯. 纳米碳管阵列场增强因子的计算. 物理学报, 2006, 55(2): 797-802. doi: 10.7498/aps.55.797
    [5] 马玉龙, 向伟, 金大志, 陈磊, 姚泽恩, 王琦龙. 碳纳米管薄膜场蒸发效应. 物理学报, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [6] 聂国政, 邹代峰, 钟春良, 许英. 内嵌CuO薄膜对并五苯薄膜晶体管性能的改善. 物理学报, 2015, 64(22): 228502. doi: 10.7498/aps.64.228502
    [7] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [8] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究. 物理学报, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [9] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [10] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能. 物理学报, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [11] 张 喆, 张 杰, 李玉同, 郝作强, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道导电性能的研究. 物理学报, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [12] 朱亚波, 王万录, 廖克俊. 对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究. 物理学报, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [13] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [14] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [15] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [16] 何春山, 王伟良, 陈桂华, 李志兵. 镜像势对碳纳米管阵列场发射特性的影响. 物理学报, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [17] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [18] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究. 物理学报, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [19] 张恩虬;高怀蓉. 量测电子管接触电势差的改进方法. 物理学报, 1956, 12(3): 271-274. doi: 10.7498/aps.12.271
    [20] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场. 物理学报, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1138
  • PDF下载量:  752
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-09-26
  • 刊出日期:  2013-12-05

一种平行栅碳纳米管阵列阴极的场发射特性研究

  • 1. 内蒙古大学鄂尔多斯学院, 鄂尔多斯 017000
    基金项目: 

    国家自然科学基金(批准号:61261004)资助的课题.

摘要: 建立一种平行栅碳纳米管阵列阴极,利用悬浮球模型和镜像电荷法进行计算,给出碳纳米管顶端表面电场与电场增强因子的解析式. 在此基础上,进一步分析器件各类参数以及接触电阻对阴极电子发射性能的影响. 分析表明,碳纳米管间距大约为2倍碳纳米管高度时阵列阴极的分布密度最佳,靠边缘部位的碳纳米管发射电子能力比其中心部位的大;除碳纳米管的长径比之外,栅极宽度和栅极间距也对电场增强因子有一定作用;接触电阻的存在大幅度降低碳纳米管顶端表面电场与发射电流,而接触电阻高于800 kΩ时,器件对阳极驱动电压的要求更高.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回