搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东方超环托卡马克高约束模式边界等离子体输运数值模拟研究

杜海龙 桑超峰 王亮 孙继忠 刘少承 汪惠乾 张凌 郭后扬 王德真

东方超环托卡马克高约束模式边界等离子体输运数值模拟研究

杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真
PDF
导出引用
  • 利用SOLPS5.0模拟研究东方超环托卡马克(EAST)高约束模式时的刮削层等离子体. 在高约束模式放电实验参数(第36291炮)的限制下,通过调整上游区径向反常输运系数来实现高约束模式模拟,在上游电子密度和温度与实验符合的条件下能够很好地进行下游区模拟. 在实现高约束模拟的基础上又分别研究了漂移项对偏滤器靶板能流不对称性的影响和上游能流衰减宽度对靶板能流密度峰值的影响. 通过模拟发现,漂移是导致EAST放电内外靶板不对称性的主要原因,增大上游能流衰减宽度可以明显降低入射到靶板的峰值热流,并且偏滤器区辐射以及与中性粒子的相互作用减小了能流的衰减宽度对达到靶板能流的影响.
    • 基金项目: 国际热核聚变实验堆(ITER)计划专项课题(批准号:2013GB109001,2013GB107003)和国家自然科学基金(批准号:11275042,11105177,11305026)资助的课题.
    [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105

    [2]

    Connor J W 1998 Plasma Phys. Control. Fusion 40 531

    [3]

    Huang Y, Nie L, Yu D L, Liu C H, Feng Z, Duan X R 2011 Chin. Phys. B 20 055201

    [4]

    Chankin A V, Coster D P, Dux R, Fuchs C, Haas G, Herrmann A, Horton L D, Kallenbach A, Kaufmann M, Konz C, Lackner K, Maggi C, Muller H W, Neuhauser J, Pugno R, Reich M, Schneider W 2006 Plasma Phys. Control. Fusion 48 839

    [5]

    Gulejová B, Pitts R A, Coster D, Bonnin X, Beurskens M, Jachmich S, Kallenbach A 2009 J. Nucl. Mater. 390–391 412

    [6]

    Gulejova B, Pitts R A, Wischmeier M, Behn R, Coster D, Horacek J, Marki J 2007 J. Nucl. Mater. 363–365 1037

    [7]

    Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, Shan J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202

    [8]

    Liu Z X, Gao X, Zhang W Y, Li J G, Gong X Z, Jie Y X, Zhang S B, Zeng L, Shi N 2012 Plasma Phys. Control. Fusion 54 085005

    [9]

    Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G 2013 Nucl. Fusion 53 073028

    [10]

    Wang L, Xu G S, Guo H Y, Chen R, Ding S, Gan K F, Gao X, Gong X Z, Jiang M, Liu P, Liu S C, Luo G N, Ming T F, Wan B N, Wang D S, Wang F M, Wang H Q, Wu Z W, Yan N, Zhang L, Zhang W, Zhang X J, Zhu S Z 2012 Nucl. Fusion 52 063024

    [11]

    Xu G S, Wan B N, Li J G, Gong X Z, Hu J S, Shan J F, Li H, Mansfield D K, Humphreys D A, Naulin V 2011 Nucl. Fusion 51 072001

    [12]

    Canik J M, Maingi R, Soukhanovskii V A, Bell R E, Kugel H W, LeBlanc B P, Osborne T H 2011 J. Nucl. Mater. 415 S409

    [13]

    Xu J C, Wang F D, Lu B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 物理学报 61 145203]

    [14]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter D, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3

    [15]

    Reiter D, May Chr, Coster D, Schneider R 1995 J. Nucl. Mater. 220-222 987

    [16]

    Chen Y P, Wang D S, Guo H Y 2011 Nucl. Fusion 51 083042

    [17]

    Pan Y D, Zhang J H, Li W, Li J X 2011 J. Nucl. Mater. 415 S952

    [18]

    Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N, Li J G 2013 Phys. Plasmas 20 022311

    [19]

    Chen Y P, Kawashima H, Asakura N, Shimizu K, Takenaga H 2011 Plasma Sci. Technol. 13 302

    [20]

    Guo H Y, Gao X, Li J, Luo G N, Zhu S, Chang J F, Chen Y P, Gao W, Gong X Z, Hu Q S, Li Q, Liu S C, Ming T F, Ou J, Shi Y J, Wan B N, Wang D S, Wang H Q, Wang J, Wu Z W, Xiao B J, Xu Q, Zhang L, Zhang W 2011 J. Nucl. Mater. 415 S369

    [21]

    Coster D P, Schneider R, Neuhauser J, Bosch H S, Wunderlich R, Fuchs C, Mast F, Kallenbach A, Dux R, Becker G, Braams B J, Reiter D 1997 J. Nucl. Mater. 241–243 690

    [22]

    Schneider R, Runov A 2007 Plasma Phys. Control. Fusion 49 S87

    [23]

    Braams B J 1996 Contrib. Plasma Phys. 36 276

    [24]

    Warrier M, Schneider R, Bonnin X 2004 Compt. Phys. Commun. 160 46

    [25]

    Hill D N, Braams B J, Brooks J N, Campbel R, Haines J, Knoll D, Milovich J, Prjnja A, Rognlien T, Stotler D P, Ulrjcksonc M 1991 Proc. 18th Eur. Conf. on Controlled Fusion and Plasma Physics, Berlin, Germany, June 3–7, 1991 vol. III, pp.233

    [26]

    Hill D N, Braams B, Haines J, Milovich J, Rognlien T, Stotler D P, Ulrickson M 1992 Fusion Technol. 21 1263

    [27]

    Zhu S Z, Zha X J 2003 J. Nucl. Mater. 313–316 1020

    [28]

    Fundamenski W 2005 Plasma Phys. Control. Fusion. 47 R163

    [29]

    Batishchev O V, Krasheninnikov S I, Catto Peter J, Batishcheva A A, Sigmar D J, Xu X Q, Byers J A, Rognlien T D, Cohen R H, Shoucri M M, Shkarofskii I P 1997 Phys. Plasmas 4 1672

    [30]

    Tskhakaya D, Subba F, Bonnin X, Coster D P, Fundamenski W, Pitts R A 2008 Contrib. Plasma Phys. 1 89

    [31]

    Horton L D, Chankin A V, Chen Y P, Conway G D, Coster D P, Eich T, Kaveeva E, Konz C, Kurzan B, Neuhauser J, Nunes I, Reich M, Rozhansky V, Saarelma S, Schirmer J, Schweinzer J, Voskoboynikov S, Wolfrum E 2005 Nucl. Fusion. 45 856

    [32]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82 063502

    [33]

    Rozhansky V, Molchanov P, Veselova I, Voskoboynikov S, Kirk A, Fishpool G, Boerner P, Reiter D, Coster D 2013 J. Nucl. Mater. 438 S297

    [34]

    Ou J, Zhu S Z 2007 Plasma Sci. Technol. 9 417

    [35]

    Xu G S, Naulin V, Wan B N, Guo H Y, Zhang W, Chang J F, Yan N, Ding S Y, Zhang L, Wang L, Liu S C, Liu P, Jiang M, Wang H Q, Juul Rasmussen J, Nielsen A H, Xiao C J, Gao X, Hu L Q, Zhu S Z, Wu Z W, Qian J P, Gong X Z 2011 Plasma Sci. Technol. 13 397

    [36]

    Aho-Mantila L, Wischmeier M, Krieger K, Rohde V, Mller H W, Coster, D P, Groth, M, Kirschner A, Neu R, Potzel S, Sieglin B, Wolfrum E 2011 J. Nucl. Mater. 415 S231

    [37]

    Kukushkin A S, Pacher H D, Pacher G W, Kotov V, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S203

  • [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105

    [2]

    Connor J W 1998 Plasma Phys. Control. Fusion 40 531

    [3]

    Huang Y, Nie L, Yu D L, Liu C H, Feng Z, Duan X R 2011 Chin. Phys. B 20 055201

    [4]

    Chankin A V, Coster D P, Dux R, Fuchs C, Haas G, Herrmann A, Horton L D, Kallenbach A, Kaufmann M, Konz C, Lackner K, Maggi C, Muller H W, Neuhauser J, Pugno R, Reich M, Schneider W 2006 Plasma Phys. Control. Fusion 48 839

    [5]

    Gulejová B, Pitts R A, Coster D, Bonnin X, Beurskens M, Jachmich S, Kallenbach A 2009 J. Nucl. Mater. 390–391 412

    [6]

    Gulejova B, Pitts R A, Wischmeier M, Behn R, Coster D, Horacek J, Marki J 2007 J. Nucl. Mater. 363–365 1037

    [7]

    Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, Shan J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202

    [8]

    Liu Z X, Gao X, Zhang W Y, Li J G, Gong X Z, Jie Y X, Zhang S B, Zeng L, Shi N 2012 Plasma Phys. Control. Fusion 54 085005

    [9]

    Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G 2013 Nucl. Fusion 53 073028

    [10]

    Wang L, Xu G S, Guo H Y, Chen R, Ding S, Gan K F, Gao X, Gong X Z, Jiang M, Liu P, Liu S C, Luo G N, Ming T F, Wan B N, Wang D S, Wang F M, Wang H Q, Wu Z W, Yan N, Zhang L, Zhang W, Zhang X J, Zhu S Z 2012 Nucl. Fusion 52 063024

    [11]

    Xu G S, Wan B N, Li J G, Gong X Z, Hu J S, Shan J F, Li H, Mansfield D K, Humphreys D A, Naulin V 2011 Nucl. Fusion 51 072001

    [12]

    Canik J M, Maingi R, Soukhanovskii V A, Bell R E, Kugel H W, LeBlanc B P, Osborne T H 2011 J. Nucl. Mater. 415 S409

    [13]

    Xu J C, Wang F D, Lu B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 物理学报 61 145203]

    [14]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter D, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3

    [15]

    Reiter D, May Chr, Coster D, Schneider R 1995 J. Nucl. Mater. 220-222 987

    [16]

    Chen Y P, Wang D S, Guo H Y 2011 Nucl. Fusion 51 083042

    [17]

    Pan Y D, Zhang J H, Li W, Li J X 2011 J. Nucl. Mater. 415 S952

    [18]

    Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N, Li J G 2013 Phys. Plasmas 20 022311

    [19]

    Chen Y P, Kawashima H, Asakura N, Shimizu K, Takenaga H 2011 Plasma Sci. Technol. 13 302

    [20]

    Guo H Y, Gao X, Li J, Luo G N, Zhu S, Chang J F, Chen Y P, Gao W, Gong X Z, Hu Q S, Li Q, Liu S C, Ming T F, Ou J, Shi Y J, Wan B N, Wang D S, Wang H Q, Wang J, Wu Z W, Xiao B J, Xu Q, Zhang L, Zhang W 2011 J. Nucl. Mater. 415 S369

    [21]

    Coster D P, Schneider R, Neuhauser J, Bosch H S, Wunderlich R, Fuchs C, Mast F, Kallenbach A, Dux R, Becker G, Braams B J, Reiter D 1997 J. Nucl. Mater. 241–243 690

    [22]

    Schneider R, Runov A 2007 Plasma Phys. Control. Fusion 49 S87

    [23]

    Braams B J 1996 Contrib. Plasma Phys. 36 276

    [24]

    Warrier M, Schneider R, Bonnin X 2004 Compt. Phys. Commun. 160 46

    [25]

    Hill D N, Braams B J, Brooks J N, Campbel R, Haines J, Knoll D, Milovich J, Prjnja A, Rognlien T, Stotler D P, Ulrjcksonc M 1991 Proc. 18th Eur. Conf. on Controlled Fusion and Plasma Physics, Berlin, Germany, June 3–7, 1991 vol. III, pp.233

    [26]

    Hill D N, Braams B, Haines J, Milovich J, Rognlien T, Stotler D P, Ulrickson M 1992 Fusion Technol. 21 1263

    [27]

    Zhu S Z, Zha X J 2003 J. Nucl. Mater. 313–316 1020

    [28]

    Fundamenski W 2005 Plasma Phys. Control. Fusion. 47 R163

    [29]

    Batishchev O V, Krasheninnikov S I, Catto Peter J, Batishcheva A A, Sigmar D J, Xu X Q, Byers J A, Rognlien T D, Cohen R H, Shoucri M M, Shkarofskii I P 1997 Phys. Plasmas 4 1672

    [30]

    Tskhakaya D, Subba F, Bonnin X, Coster D P, Fundamenski W, Pitts R A 2008 Contrib. Plasma Phys. 1 89

    [31]

    Horton L D, Chankin A V, Chen Y P, Conway G D, Coster D P, Eich T, Kaveeva E, Konz C, Kurzan B, Neuhauser J, Nunes I, Reich M, Rozhansky V, Saarelma S, Schirmer J, Schweinzer J, Voskoboynikov S, Wolfrum E 2005 Nucl. Fusion. 45 856

    [32]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82 063502

    [33]

    Rozhansky V, Molchanov P, Veselova I, Voskoboynikov S, Kirk A, Fishpool G, Boerner P, Reiter D, Coster D 2013 J. Nucl. Mater. 438 S297

    [34]

    Ou J, Zhu S Z 2007 Plasma Sci. Technol. 9 417

    [35]

    Xu G S, Naulin V, Wan B N, Guo H Y, Zhang W, Chang J F, Yan N, Ding S Y, Zhang L, Wang L, Liu S C, Liu P, Jiang M, Wang H Q, Juul Rasmussen J, Nielsen A H, Xiao C J, Gao X, Hu L Q, Zhu S Z, Wu Z W, Qian J P, Gong X Z 2011 Plasma Sci. Technol. 13 397

    [36]

    Aho-Mantila L, Wischmeier M, Krieger K, Rohde V, Mller H W, Coster, D P, Groth, M, Kirschner A, Neu R, Potzel S, Sieglin B, Wolfrum E 2011 J. Nucl. Mater. 415 S231

    [37]

    Kukushkin A S, Pacher H D, Pacher G W, Kotov V, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S203

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1693
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2013-08-22
  • 刊出日期:  2013-12-05

东方超环托卡马克高约束模式边界等离子体输运数值模拟研究

  • 1. 大连理工大学物理与光电工程学院, 大连 116023;
  • 2. 中国科学院等离子体物理研究所, 合肥 230031
    基金项目: 

    国际热核聚变实验堆(ITER)计划专项课题(批准号:2013GB109001,2013GB107003)和国家自然科学基金(批准号:11275042,11105177,11305026)资助的课题.

摘要: 利用SOLPS5.0模拟研究东方超环托卡马克(EAST)高约束模式时的刮削层等离子体. 在高约束模式放电实验参数(第36291炮)的限制下,通过调整上游区径向反常输运系数来实现高约束模式模拟,在上游电子密度和温度与实验符合的条件下能够很好地进行下游区模拟. 在实现高约束模拟的基础上又分别研究了漂移项对偏滤器靶板能流不对称性的影响和上游能流衰减宽度对靶板能流密度峰值的影响. 通过模拟发现,漂移是导致EAST放电内外靶板不对称性的主要原因,增大上游能流衰减宽度可以明显降低入射到靶板的峰值热流,并且偏滤器区辐射以及与中性粒子的相互作用减小了能流的衰减宽度对达到靶板能流的影响.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回