搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度改变对钛氧化物忆阻器导电特性的影响

徐晖 田晓波 步凯 李清江

温度改变对钛氧化物忆阻器导电特性的影响

徐晖, 田晓波, 步凯, 李清江
PDF
导出引用
  • 相同测试条件下,纳米钛氧化物忆阻器的导电过程存在不稳定性,制约了对器件瞬态阻抗的精确读取与控制,并影响了器件应用于电路设计的可靠性与稳定性. 杂质漂移与隧道势垒的共存是导致上述不稳定性的可能因素,且杂质漂移特性与环境温度密切相关. 然而,目前尚无通过控制温度提高忆阻器导电稳定性的具体研究. 基于杂质漂移与隧道势垒共存,本文分析了温度与忆阻器导电特性的关联,研究了器件活跃区域厚度及初始掺杂层厚度的改变对临界温度的影响,利用SPICE软件进行了仿真验证并给出结果,得出提高忆阻器导电稳定性的方法有:增大活跃区域厚度、降低初始杂质浓度及保持环境温度稳定且低于临界温度,从而为制备性能稳定的忆阻器及推动器件在实际电路中的应用提供依据.
    • 基金项目: 国家自然科学基金(批准号:61171017,F010505)资助的课题.
    [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 59 148

    [4]

    Rumberg B, Graham D W 2012 IEEE Trans. Circuits Syst. II, Exp. Briefs 59 4

    [5]

    Berdan R, Prodromakis T, Toumazou C 2012 Electron. Lett. 48 18

    [6]

    Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California USA, July 23-25, p939

    [7]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese)[包伯成, 刘中, 许建平 2010 物理学报 59 3785]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [9]

    Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese)[许碧容 2013 物理学报 62 190506]

    [10]

    Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J, Huang D 2013 Chin. Phys. B 22 078901

    [11]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [12]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)[李智炜, 刘海军, 徐欣 2013 物理学报 62 096401]

    [13]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [14]

    Yoon K J, Lee M H, Kim G H, Song S J, Seok J Y, Han S, Yoon J H, Kim K M, Hwang C S 2012 Nanotechnology 23 185202

    [15]

    Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D A A, Ribeiro G M, Williams R S 2011 Appl. Phys. A 102 785

    [16]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [17]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [18]

    Mladenov M V, Kirilov S M 2013 International Symposium on Theoretical Electrical Engineering, Czech Republic, Jun 24-26, p6

    [19]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [20]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [21]

    Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems, Brazil, May 15-18, p1832

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 59 148

    [4]

    Rumberg B, Graham D W 2012 IEEE Trans. Circuits Syst. II, Exp. Briefs 59 4

    [5]

    Berdan R, Prodromakis T, Toumazou C 2012 Electron. Lett. 48 18

    [6]

    Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California USA, July 23-25, p939

    [7]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese)[包伯成, 刘中, 许建平 2010 物理学报 59 3785]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [9]

    Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese)[许碧容 2013 物理学报 62 190506]

    [10]

    Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J, Huang D 2013 Chin. Phys. B 22 078901

    [11]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [12]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)[李智炜, 刘海军, 徐欣 2013 物理学报 62 096401]

    [13]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [14]

    Yoon K J, Lee M H, Kim G H, Song S J, Seok J Y, Han S, Yoon J H, Kim K M, Hwang C S 2012 Nanotechnology 23 185202

    [15]

    Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D A A, Ribeiro G M, Williams R S 2011 Appl. Phys. A 102 785

    [16]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [17]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [18]

    Mladenov M V, Kirilov S M 2013 International Symposium on Theoretical Electrical Engineering, Czech Republic, Jun 24-26, p6

    [19]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [20]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [21]

    Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems, Brazil, May 15-18, p1832

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2290
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-13
  • 修回日期:  2014-01-13
  • 刊出日期:  2014-05-05

温度改变对钛氧化物忆阻器导电特性的影响

  • 1. 国防科学与技术大学电子科学与工程学院, 长沙 410073
    基金项目: 

    国家自然科学基金(批准号:61171017,F010505)资助的课题.

摘要: 相同测试条件下,纳米钛氧化物忆阻器的导电过程存在不稳定性,制约了对器件瞬态阻抗的精确读取与控制,并影响了器件应用于电路设计的可靠性与稳定性. 杂质漂移与隧道势垒的共存是导致上述不稳定性的可能因素,且杂质漂移特性与环境温度密切相关. 然而,目前尚无通过控制温度提高忆阻器导电稳定性的具体研究. 基于杂质漂移与隧道势垒共存,本文分析了温度与忆阻器导电特性的关联,研究了器件活跃区域厚度及初始掺杂层厚度的改变对临界温度的影响,利用SPICE软件进行了仿真验证并给出结果,得出提高忆阻器导电稳定性的方法有:增大活跃区域厚度、降低初始杂质浓度及保持环境温度稳定且低于临界温度,从而为制备性能稳定的忆阻器及推动器件在实际电路中的应用提供依据.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回