搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

张凤春 李春福 张丛雷 冉曾令

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

张凤春, 李春福, 张丛雷, 冉曾令
PDF
导出引用
  • 采用广义梯度近似下的密度泛函理论方法,研究了不同覆盖度下H2S,HS自由基以及S 原子在Fe(111)表面的吸附结构和吸附特性,计算了吸附能、功函数、差分电荷密度、态密度和电荷布居,讨论了覆盖度对表面吸附的影响作用,对比分析了H2S,HS自由基,S在Fe(111)表面的吸附强弱. 研究结果表明:随着覆盖度的增大,吸附物与表面的作用力逐渐减弱;H2S,HS自由基,S三者与Fe(111)表面的作用力大小依次为:H2SxSy腐蚀产物膜,只是随着覆盖度的不同,其致密度将发生变化. 各吸附物在低指数晶面上的吸附结果表明:Fe(111)面吸附作用最强,而Fe(110)和Fe(100)吸附作用相对较弱,二者吸附能相差不大.
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA06A105)和西南石油大学油气藏地质及开发工程国家重点实验室基金(批准号:PLN0609)资助的课题.
    [1]

    Chinese Cankerous and Protection Society, Lu Q M 2001 Corrosion and Protection in oil industry (Beijing: Chemical Industry Press) p4 (in Chinese) [中国腐蚀与防护学会, 卢绮敏 2001 石油工业中的腐蚀与防护 (北京: 化学工业出版社) 第4页]

    [2]

    Kuzyukov A N 2002 Int. J. Hydrogen Energy 27 813

    [3]

    Siddiqui R A 2005 J. Mater. Process. Technol. 170 430

    [4]

    Kashkovskiy R V, Kuznetsov Yu I, Kazansky L P 2012 Corros. Sci. 64 126

    [5]

    Chumalo H V 2012 Mater. Sci. 48 176

    [6]

    Kudryavtsev D B, Panteleeva A R, Yurina A V, Lukashenko S S, Khodyrev Y P, Galiakberov R M, Khaziakhmetov D N, Kudryavtseva L A 2009 Petroleum Chem. 49 193

    [7]

    Qi Y M, Luo H Y, Zheng S Q, Chen C F, Wang D N 2013 Corros. Sci. 69 164

    [8]

    Braun F, Miller J B, Gellman A J, Tarditi A M, Fleutot B, Kondratyuk P, Cornaglia L M 2012 Int. J. Hydrogen Energy 37 18547

    [9]

    Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, Martinez L, Chacon-Nava J G, Neri-Flores M A, Martinez-Villafañe A 2009 Corros. Sci. 51 2380

    [10]

    Taheri H, Kakooei S, Ismail M C, Dolati A 2012 Casp. J. Appl. Sci. Res. 1 41

    [11]

    Jiang D E, Carter E A 2005 Surf. Sci. 583 60

    [12]

    Jiang D E, Carter E A 2004 J. Phys. Chem. B 108 19140

    [13]

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101 (in Chinese) [罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101]

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [18]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Zhang Y, Yang W 1998 Phys. Rev. B 80 890

    [21]

    Peng S F, Ho J J 2010 J. Phys. Chem. C 114 19489

    [22]

    Broyden C G 1970 J. Inst. Math. Appl. 6 76

    [23]

    Fletcher R 1970 Comput. J. 13 317

    [24]

    Goldfarb D 1970 Math. Comput. 24 23

    [25]

    Shanno D F 1970 Math. Comput. 24 647

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kittel C 1996 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley & Sons)

    [29]

    Chen H L, Wu S Y, Chen H T, Chang J G, Ju S P, Tsai C, Hsu L C 2010 Langmuir 26 7157

    [30]

    Ma C A, Liu T, Chen L T 2010 Acta Phys. Chim. Sin. 26 155 (in Chinese) [马淳安, 刘婷, 陈丽涛 2010 物理化学学报 26 155]

    [31]

    Song J J, Pei J F, Deng X F, Qin Z J, Tang X G 2012 Corros. Protect. 33 649 (in Chinese) [宋佳佳, 裴峻峰, 邓学风, 秦志坚, 汤学耕 2012 腐蚀与防护 33 649]

    [32]

    Liu W, Pu X L, Bai X D, Zhao H W 2008 Petroleum Drilling Techniques 36 83 (in Chinese) [刘伟, 蒲小林, 白晓东, 赵昊伟 2008 石油钻探技术 36 83]

    [33]

    Huang B S, Lu X, Liu Q Y 2011 Corros. Sci. Protect. Technol. 23 205 (in Chinese) [黄本生, 卢曦, 刘清友 2011 腐蚀科学与防腐技术 23 205]

    [34]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [35]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 075407

    [36]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福和, 周云松 2010 物理学报 59 7278]

  • [1]

    Chinese Cankerous and Protection Society, Lu Q M 2001 Corrosion and Protection in oil industry (Beijing: Chemical Industry Press) p4 (in Chinese) [中国腐蚀与防护学会, 卢绮敏 2001 石油工业中的腐蚀与防护 (北京: 化学工业出版社) 第4页]

    [2]

    Kuzyukov A N 2002 Int. J. Hydrogen Energy 27 813

    [3]

    Siddiqui R A 2005 J. Mater. Process. Technol. 170 430

    [4]

    Kashkovskiy R V, Kuznetsov Yu I, Kazansky L P 2012 Corros. Sci. 64 126

    [5]

    Chumalo H V 2012 Mater. Sci. 48 176

    [6]

    Kudryavtsev D B, Panteleeva A R, Yurina A V, Lukashenko S S, Khodyrev Y P, Galiakberov R M, Khaziakhmetov D N, Kudryavtseva L A 2009 Petroleum Chem. 49 193

    [7]

    Qi Y M, Luo H Y, Zheng S Q, Chen C F, Wang D N 2013 Corros. Sci. 69 164

    [8]

    Braun F, Miller J B, Gellman A J, Tarditi A M, Fleutot B, Kondratyuk P, Cornaglia L M 2012 Int. J. Hydrogen Energy 37 18547

    [9]

    Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, Martinez L, Chacon-Nava J G, Neri-Flores M A, Martinez-Villafañe A 2009 Corros. Sci. 51 2380

    [10]

    Taheri H, Kakooei S, Ismail M C, Dolati A 2012 Casp. J. Appl. Sci. Res. 1 41

    [11]

    Jiang D E, Carter E A 2005 Surf. Sci. 583 60

    [12]

    Jiang D E, Carter E A 2004 J. Phys. Chem. B 108 19140

    [13]

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101 (in Chinese) [罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101]

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [18]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Zhang Y, Yang W 1998 Phys. Rev. B 80 890

    [21]

    Peng S F, Ho J J 2010 J. Phys. Chem. C 114 19489

    [22]

    Broyden C G 1970 J. Inst. Math. Appl. 6 76

    [23]

    Fletcher R 1970 Comput. J. 13 317

    [24]

    Goldfarb D 1970 Math. Comput. 24 23

    [25]

    Shanno D F 1970 Math. Comput. 24 647

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kittel C 1996 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley & Sons)

    [29]

    Chen H L, Wu S Y, Chen H T, Chang J G, Ju S P, Tsai C, Hsu L C 2010 Langmuir 26 7157

    [30]

    Ma C A, Liu T, Chen L T 2010 Acta Phys. Chim. Sin. 26 155 (in Chinese) [马淳安, 刘婷, 陈丽涛 2010 物理化学学报 26 155]

    [31]

    Song J J, Pei J F, Deng X F, Qin Z J, Tang X G 2012 Corros. Protect. 33 649 (in Chinese) [宋佳佳, 裴峻峰, 邓学风, 秦志坚, 汤学耕 2012 腐蚀与防护 33 649]

    [32]

    Liu W, Pu X L, Bai X D, Zhao H W 2008 Petroleum Drilling Techniques 36 83 (in Chinese) [刘伟, 蒲小林, 白晓东, 赵昊伟 2008 石油钻探技术 36 83]

    [33]

    Huang B S, Lu X, Liu Q Y 2011 Corros. Sci. Protect. Technol. 23 205 (in Chinese) [黄本生, 卢曦, 刘清友 2011 腐蚀科学与防腐技术 23 205]

    [34]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [35]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 075407

    [36]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福和, 周云松 2010 物理学报 59 7278]

  • [1] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [2] 卢奕宏, 柯聪明, 付明明, 吴志明, 康俊勇, 张纯淼, 吴雅苹. 单层GaSe表面Fe原子吸附体系电子自旋性质调控. 物理学报, 2017, 66(16): 166301. doi: 10.7498/aps.66.166301
    [3] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [4] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [5] 殷聪, 谢逸群, 巩秀芳, 庄军, 宁西京. 理论预测晶体表面吸附二维原子岛的形状. 物理学报, 2009, 58(8): 5291-5296. doi: 10.7498/aps.58.5291
    [6] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [7] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [8] 李 波, 鲍世宁, 庄友谊, 曹培林. 乙烯在Ni(110)表面吸附的几何结构. 物理学报, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [9] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [10] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [11] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为. 物理学报, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [12] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [13] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [14] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究. 物理学报, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [15] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 肖奇, 邱冠周, 胡岳华, 王淀佐. FeS2(100)表面原子几何与电子结构的理论研究. 物理学报, 2002, 51(9): 2133-2138. doi: 10.7498/aps.51.2133
    [18] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1485
  • PDF下载量:  926
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-03-12
  • 刊出日期:  2014-06-05

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

  • 1. 西南石油大学, 油气藏地质及开发工程国家重点实验室, 成都 610500;
  • 2. 电子科技大学, 光纤传感与通信教育部重点实验室, 成都 611731
    基金项目: 

    国家高技术研究发展计划(批准号:2006AA06A105)和西南石油大学油气藏地质及开发工程国家重点实验室基金(批准号:PLN0609)资助的课题.

摘要: 采用广义梯度近似下的密度泛函理论方法,研究了不同覆盖度下H2S,HS自由基以及S 原子在Fe(111)表面的吸附结构和吸附特性,计算了吸附能、功函数、差分电荷密度、态密度和电荷布居,讨论了覆盖度对表面吸附的影响作用,对比分析了H2S,HS自由基,S在Fe(111)表面的吸附强弱. 研究结果表明:随着覆盖度的增大,吸附物与表面的作用力逐渐减弱;H2S,HS自由基,S三者与Fe(111)表面的作用力大小依次为:H2SxSy腐蚀产物膜,只是随着覆盖度的不同,其致密度将发生变化. 各吸附物在低指数晶面上的吸附结果表明:Fe(111)面吸附作用最强,而Fe(110)和Fe(100)吸附作用相对较弱,二者吸附能相差不大.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回