搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光缔合制备超冷铯分子的温度测量

赵延霆 元晋鹏 姬中华 李中豪 孟腾飞 刘涛 肖连团 贾锁堂

光缔合制备超冷铯分子的温度测量

赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂
PDF
导出引用
  • 利用光缔合超冷Cs原子形成超冷Cs2分子,采用多光子电离方法对超冷Cs2分子进行探测,对分子扩散过程中分子密度随时间的演化进行测量,获得了超冷Cs2分子的弛豫曲线. 基于一个简单的模型即原子、分子样品的初始分布是位置和速度的高斯函数,通过理论模拟获得了超冷原子、分子样品的温度,测得的原子温度与释放- 再俘获方法获得的结果相符合,这种方法避免了通过探测微弱分子荧光来获得分子温度的弊端,可广泛应用于超冷原子、分子样品的温度测量.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603,2010CB923103)、国家自然科学基金(批准号:61275209,10934004,61378015,11304189)、国家高技术研究发展计划(批准号:2011AA010801)、国家国际科技合作专项(批准号:2001DFA12490)、国家基金创新团队(批准号:61121064)和教育部长江学者和创新团队(批准号:IRT13076)资助的课题.
    [1]

    Zhou S Y, Xu Z, Qu Q Z, Zhou S Y, Liu L, Wang Y Z 2009 Acta Phys. Sin. 58 1590(in Chinese) [周蜀渝, 徐震, 屈求智, 周善钰, 刘亮, 王育竹 2009 物理学报 58 1590]

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [3]

    Ma J, Cheng P, Liu W L, Feng G S, Li Y Q, Wu J Z, Xiao L T, Jia S T 2013 Acta Phys. Sin. 62 223301(in Chinese) [马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂 2013 物理学报 62 223301]

    [4]

    Semczuk M, Li X, Gunton W, Haw M, Dattani N S, Witz J, Mills A K, Jones D J, Madison K W 2013 Phys. Rev. A 87 052505

    [5]

    John W, Bagnato V S, Sergio Z, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [6]

    Jin D S, Ye J 2012 Chemical Reviews 112 4801

    [7]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [8]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [9]

    Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R, Hecker Denschlag J 2004 Phys. Rev. Lett. 93 123001

    [10]

    Jones K M, Tiesinga E, Paul D L, Julienne P S 2006 Rev. Mod. Phys. 78 483

    [11]

    Xia Y, Yin Y, Chen H, Deng L, Yin J 2008 Phys. Rev. Lett. 100 043003

    [12]

    Marangoni B S, Menegatti C R, Marcassa L G 2010 Laser Physics 20 557

    [13]

    Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L, Metcalf H J 1988 Phys. Rev. Lett. 61 169

    [14]

    He J, Wang J, Qiu Y, Wang Y H, Zhang T C, Wang J M 2008 Acta Phys. Sin. 57 6221(in Chinese) [何军, 王婧, 邱英, 王彦华, 张天才, 王军民 2008 物理学报 57 6221]

    [15]

    Courtois J Y, Grynberg G, Lounis B, Verkerk P 1994 Phys. Rev. Lett. 72 3017

    [16]

    Mitsunaga M, Yamashita M, Koashi M, Iomoto N 1998 Opt. Lett. 23 840

    [17]

    Peters T, Wittrock B, Blatt F, Halfmann T, Yatsenko L P 2012 Phys. Rev. A 85 063416

    [18]

    Wang D, Neyenhuis B, de Miranda M H G, Ni K K, Ospelkaus S, Jin D S, Ye J 2010 Phys. Rev. A 81 061404

    [19]

    Greiner M, Regal C A, Jin D S 2003 Nature 426 537

    [20]

    Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F, Pillet P 1998 Phys. Rev. Lett. 80 4402

    [21]

    Lambrecht A, Giacobino E, Reynaud S 1996 Quantum Semiclass. Opt. 8 457

    [22]

    Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093701

    [23]

    Ji Z H, Wu J Z, Ma J, Feng Z G, Zhang L J, Zhao Y T, Wang L R, Xiao L T, Jia S T 2010 Chin. Phys. Lett. 27 053701

    [24]

    Ji Z H, Zhang R R, Ma J, Dong L, Zhao Y T, Jia S T 2009 Chinese Journal of Lasers 36 804(in Chinese) [姬中华, 张冉冉, 马杰, 董磊, 赵延霆, 贾锁堂 2009 中国激光 36 804]

    [25]

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Peking University Press) p178 (in Chinese) [王义遒2007原子的激光冷却与陷俘(北京: 北京大学出版社)第178页]

    [26]

    Jin L, Feng G S, Wu J Z, Ma J, Wang L R, Xiao L T, Jia S T 2013 Chin. Phys. B 22 088701

  • [1]

    Zhou S Y, Xu Z, Qu Q Z, Zhou S Y, Liu L, Wang Y Z 2009 Acta Phys. Sin. 58 1590(in Chinese) [周蜀渝, 徐震, 屈求智, 周善钰, 刘亮, 王育竹 2009 物理学报 58 1590]

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [3]

    Ma J, Cheng P, Liu W L, Feng G S, Li Y Q, Wu J Z, Xiao L T, Jia S T 2013 Acta Phys. Sin. 62 223301(in Chinese) [马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂 2013 物理学报 62 223301]

    [4]

    Semczuk M, Li X, Gunton W, Haw M, Dattani N S, Witz J, Mills A K, Jones D J, Madison K W 2013 Phys. Rev. A 87 052505

    [5]

    John W, Bagnato V S, Sergio Z, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [6]

    Jin D S, Ye J 2012 Chemical Reviews 112 4801

    [7]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [8]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [9]

    Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R, Hecker Denschlag J 2004 Phys. Rev. Lett. 93 123001

    [10]

    Jones K M, Tiesinga E, Paul D L, Julienne P S 2006 Rev. Mod. Phys. 78 483

    [11]

    Xia Y, Yin Y, Chen H, Deng L, Yin J 2008 Phys. Rev. Lett. 100 043003

    [12]

    Marangoni B S, Menegatti C R, Marcassa L G 2010 Laser Physics 20 557

    [13]

    Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L, Metcalf H J 1988 Phys. Rev. Lett. 61 169

    [14]

    He J, Wang J, Qiu Y, Wang Y H, Zhang T C, Wang J M 2008 Acta Phys. Sin. 57 6221(in Chinese) [何军, 王婧, 邱英, 王彦华, 张天才, 王军民 2008 物理学报 57 6221]

    [15]

    Courtois J Y, Grynberg G, Lounis B, Verkerk P 1994 Phys. Rev. Lett. 72 3017

    [16]

    Mitsunaga M, Yamashita M, Koashi M, Iomoto N 1998 Opt. Lett. 23 840

    [17]

    Peters T, Wittrock B, Blatt F, Halfmann T, Yatsenko L P 2012 Phys. Rev. A 85 063416

    [18]

    Wang D, Neyenhuis B, de Miranda M H G, Ni K K, Ospelkaus S, Jin D S, Ye J 2010 Phys. Rev. A 81 061404

    [19]

    Greiner M, Regal C A, Jin D S 2003 Nature 426 537

    [20]

    Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F, Pillet P 1998 Phys. Rev. Lett. 80 4402

    [21]

    Lambrecht A, Giacobino E, Reynaud S 1996 Quantum Semiclass. Opt. 8 457

    [22]

    Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093701

    [23]

    Ji Z H, Wu J Z, Ma J, Feng Z G, Zhang L J, Zhao Y T, Wang L R, Xiao L T, Jia S T 2010 Chin. Phys. Lett. 27 053701

    [24]

    Ji Z H, Zhang R R, Ma J, Dong L, Zhao Y T, Jia S T 2009 Chinese Journal of Lasers 36 804(in Chinese) [姬中华, 张冉冉, 马杰, 董磊, 赵延霆, 贾锁堂 2009 中国激光 36 804]

    [25]

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Peking University Press) p178 (in Chinese) [王义遒2007原子的激光冷却与陷俘(北京: 北京大学出版社)第178页]

    [26]

    Jin L, Feng G S, Wu J Z, Ma J, Wang L R, Xiao L T, Jia S T 2013 Chin. Phys. B 22 088701

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1960
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-28
  • 修回日期:  2014-06-05
  • 刊出日期:  2014-10-05

光缔合制备超冷铯分子的温度测量

  • 1. 量子光学与光量子器件国家重点实验室, 山西大学激光光谱研究所, 太原 030006;
  • 2. 中国科学院国家授时中心, 中国科学院时间频率基准重点实验室, 西安 710600
    基金项目: 

    国家重点基础研究发展计划(批准号:2012CB921603,2010CB923103)、国家自然科学基金(批准号:61275209,10934004,61378015,11304189)、国家高技术研究发展计划(批准号:2011AA010801)、国家国际科技合作专项(批准号:2001DFA12490)、国家基金创新团队(批准号:61121064)和教育部长江学者和创新团队(批准号:IRT13076)资助的课题.

摘要: 利用光缔合超冷Cs原子形成超冷Cs2分子,采用多光子电离方法对超冷Cs2分子进行探测,对分子扩散过程中分子密度随时间的演化进行测量,获得了超冷Cs2分子的弛豫曲线. 基于一个简单的模型即原子、分子样品的初始分布是位置和速度的高斯函数,通过理论模拟获得了超冷原子、分子样品的温度,测得的原子温度与释放- 再俘获方法获得的结果相符合,这种方法避免了通过探测微弱分子荧光来获得分子温度的弊端,可广泛应用于超冷原子、分子样品的温度测量.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回