搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子进入碳纳米管端口速度的分子动力学模拟

杨成兵 解辉 刘朝

锂离子进入碳纳米管端口速度的分子动力学模拟

杨成兵, 解辉, 刘朝
PDF
导出引用
  • 锂离子进入碳纳米管端口的速度VLi是影响锂离子电池充电性能的重要因素. 采用分子动力学模拟方法,研究了直径、温度、电场强度和端口改性官能团四种因子对其影响. 运用正交实验方法,分析得出了各因子及其不同水平的影响规律. 结果表明,四种因子的影响力度由大到小依次为:电场强度、官能团类型、碳纳米管直径和温度. 在本文的模拟条件下,随着电场强度和碳纳米管直径的增大,VLi逐渐增加,且在电场强度下的增幅会更显著;碳纳米管端口官能团分别改性为氢原子(–H),羟基(–OH),氨基(–NH2)以及羧基(–COOH)时,VLi会逐步降低;随着温度的增大,VLi先增加后减小,但整体波动偏幅不大.
    • 基金项目: 国家自然科学基金(批准号:51206195)、重庆市自然科学基金(批准号:cstc2013jcyjA90009)和中央高校基本科研业务费(批准号:CDJZR12110033)资助的课题.
    [1]

    Scrosati B, Garche J 2010 Power Sources 195 2419

    [2]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 Alloy. Compd. 575 246

    [3]

    Landi B J, Ganter M J, Cress C D, DiLeo R A, Raffaelle R P 2009 Energy Environ. Sci. 2 638

    [4]

    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K 2000 Carbon 38 183

    [5]

    Stura E, Nicolini C 2006 Anal. Chim. Acta 568 57

    [6]

    Suo L, Hu Y, Li H, Armand M, Chen L 2013 Nat. Commun. 4 1481

    [7]

    Su J, Guo H 2011 Chem. Phys. 134 244513

    [8]

    Miao T T, Song M X, Ma W G, Zhang X 2011 Chin. Phys. B 20 56501

    [9]

    Wang G T 2011 Chin. Phys. B 20 67305

    [10]

    Niu Z Q, Ma W J, Dong H B, Li J Z, Zhou W Y 2011 Chin. Phys. B 20 28101

    [11]

    De Las Casas C, Li W 2012 Power Sources 208 74

    [12]

    Xiong Z, Yun Y S, Jin H 2013 Materials 6 1138

    [13]

    Zhao J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [14]

    Senami M, Ikeda Y, Fukushima A, Tachibana A 2011 AIP Advances 1 42106

    [15]

    Kawasaki S, Hara T, Iwai Y, Suzuki Y 2008 Mater. Lett. 62 2917

    [16]

    Udomvech A, Kerdcharoen T 2008 J. Korean Phys. Soc. 52 1350

    [17]

    Nishidate K, Hasegawa M 2005 Phys. Rev. B 71 245418

    [18]

    Yang Z, Wu H 2001 Solid State Ionics 143 173

    [19]

    Yang S, Huo J, Song H, Chen X 2008 Electrochim. Acta 53 2238

    [20]

    Zhang Y P, Chen T Q, Wang J H, Min G Q, Pan L K, Song Z T, Sun Z, Zhou W M, Zhang J 2012 Appl. Surf. Sci. 258 4729

    [21]

    Wongchoosuk C, Udomvech A, Kerdcharoen T 2009 Current Appl. Phys. 9 352

    [22]

    He Z J, Zhou J 2011 Acta Chim. Sin. 69 2901 (in Chinese) [贺仲金, 周健 2011 化学学报 69 2901]

    [23]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [24]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101

    [25]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 76102

    [26]

    Xie H, Liu C 2012 AIP Advances 2 42126

    [27]

    Xu C, He Y L, Wang Y 2005 J. Engineer. Thermophys. 26 912 (in Chinese) [徐超, 何雅玲, 王勇 2005 工程热物理学报 26 912]

    [28]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [29]

    Lyu S, Wu W T, Hou C C, Hsieh W 2010 Cryobiology 60 165

    [30]

    Thakkar D, Gevriya B, Mashru R C 2013 Spectrochim. Acta A 122 75

    [31]

    Jia Y, Li Y, Hu Y 2011 Acta Phys. Chim. Sin. 27 228

    [32]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [33]

    Hanasaki I, Nakatani A 2006 J. Chem. Phys. 124 174714

    [34]

    Walther J H, Ritos K, Cruz-Chu E R, Megaridis C M, Koumoutsakos P 2013 Nano Lett. 13 1910

    [35]

    Krishnan T V, Babu J S, Sathian S P 2013 Mol. Liq. 188 42

    [36]

    Zhang C B, Zhao M W, Chen Y P, Shi M H 2012 CIESC J. 63 12 (in Chinese) [张程宾, 赵沐雯, 陈永平, 施明恒 2012 化工学报 63 12]

    [37]

    Li H M, Yang D F, Liu Q Z, Hu Y D 2013 Chem. J. Chin. Univ. 34 925 (in Chinese) [李红曼, 杨登峰, 刘清芝, 胡仰栋 2013 高等学校化学学报 34 925]

    [38]

    Corry B 2011 Energy Environ. Sci. 4 751

  • [1]

    Scrosati B, Garche J 2010 Power Sources 195 2419

    [2]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 Alloy. Compd. 575 246

    [3]

    Landi B J, Ganter M J, Cress C D, DiLeo R A, Raffaelle R P 2009 Energy Environ. Sci. 2 638

    [4]

    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K 2000 Carbon 38 183

    [5]

    Stura E, Nicolini C 2006 Anal. Chim. Acta 568 57

    [6]

    Suo L, Hu Y, Li H, Armand M, Chen L 2013 Nat. Commun. 4 1481

    [7]

    Su J, Guo H 2011 Chem. Phys. 134 244513

    [8]

    Miao T T, Song M X, Ma W G, Zhang X 2011 Chin. Phys. B 20 56501

    [9]

    Wang G T 2011 Chin. Phys. B 20 67305

    [10]

    Niu Z Q, Ma W J, Dong H B, Li J Z, Zhou W Y 2011 Chin. Phys. B 20 28101

    [11]

    De Las Casas C, Li W 2012 Power Sources 208 74

    [12]

    Xiong Z, Yun Y S, Jin H 2013 Materials 6 1138

    [13]

    Zhao J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [14]

    Senami M, Ikeda Y, Fukushima A, Tachibana A 2011 AIP Advances 1 42106

    [15]

    Kawasaki S, Hara T, Iwai Y, Suzuki Y 2008 Mater. Lett. 62 2917

    [16]

    Udomvech A, Kerdcharoen T 2008 J. Korean Phys. Soc. 52 1350

    [17]

    Nishidate K, Hasegawa M 2005 Phys. Rev. B 71 245418

    [18]

    Yang Z, Wu H 2001 Solid State Ionics 143 173

    [19]

    Yang S, Huo J, Song H, Chen X 2008 Electrochim. Acta 53 2238

    [20]

    Zhang Y P, Chen T Q, Wang J H, Min G Q, Pan L K, Song Z T, Sun Z, Zhou W M, Zhang J 2012 Appl. Surf. Sci. 258 4729

    [21]

    Wongchoosuk C, Udomvech A, Kerdcharoen T 2009 Current Appl. Phys. 9 352

    [22]

    He Z J, Zhou J 2011 Acta Chim. Sin. 69 2901 (in Chinese) [贺仲金, 周健 2011 化学学报 69 2901]

    [23]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [24]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101

    [25]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 76102

    [26]

    Xie H, Liu C 2012 AIP Advances 2 42126

    [27]

    Xu C, He Y L, Wang Y 2005 J. Engineer. Thermophys. 26 912 (in Chinese) [徐超, 何雅玲, 王勇 2005 工程热物理学报 26 912]

    [28]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [29]

    Lyu S, Wu W T, Hou C C, Hsieh W 2010 Cryobiology 60 165

    [30]

    Thakkar D, Gevriya B, Mashru R C 2013 Spectrochim. Acta A 122 75

    [31]

    Jia Y, Li Y, Hu Y 2011 Acta Phys. Chim. Sin. 27 228

    [32]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [33]

    Hanasaki I, Nakatani A 2006 J. Chem. Phys. 124 174714

    [34]

    Walther J H, Ritos K, Cruz-Chu E R, Megaridis C M, Koumoutsakos P 2013 Nano Lett. 13 1910

    [35]

    Krishnan T V, Babu J S, Sathian S P 2013 Mol. Liq. 188 42

    [36]

    Zhang C B, Zhao M W, Chen Y P, Shi M H 2012 CIESC J. 63 12 (in Chinese) [张程宾, 赵沐雯, 陈永平, 施明恒 2012 化工学报 63 12]

    [37]

    Li H M, Yang D F, Liu Q Z, Hu Y D 2013 Chem. J. Chin. Univ. 34 925 (in Chinese) [李红曼, 杨登峰, 刘清芝, 胡仰栋 2013 高等学校化学学报 34 925]

    [38]

    Corry B 2011 Energy Environ. Sci. 4 751

  • [1] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [2] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [3] 朱长纯, 保文星. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [6] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [7] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [8] 张凯旺, 孟利军, 肖化平, 唐超, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [9] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [11] 朱长纯, 崔万照, 保文星. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
    [12] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型. 物理学报, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [13] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [14] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟. 物理学报, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [15] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [17] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [20] 杜玉光, 张凯旺, 彭向阳, 金福报, 钟建新. 碳纳米管内Ni纳米线的螺旋度与热稳定性研究. 物理学报, 2012, 61(17): 176102. doi: 10.7498/aps.61.176102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1196
  • PDF下载量:  1328
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-12
  • 修回日期:  2014-06-11
  • 刊出日期:  2014-10-05

锂离子进入碳纳米管端口速度的分子动力学模拟

  • 1. 重庆大学动力工程学院, 低品位能源利用技术及系统教育部重点 实验室, 重庆 400030
    基金项目: 

    国家自然科学基金(批准号:51206195)、重庆市自然科学基金(批准号:cstc2013jcyjA90009)和中央高校基本科研业务费(批准号:CDJZR12110033)资助的课题.

摘要: 锂离子进入碳纳米管端口的速度VLi是影响锂离子电池充电性能的重要因素. 采用分子动力学模拟方法,研究了直径、温度、电场强度和端口改性官能团四种因子对其影响. 运用正交实验方法,分析得出了各因子及其不同水平的影响规律. 结果表明,四种因子的影响力度由大到小依次为:电场强度、官能团类型、碳纳米管直径和温度. 在本文的模拟条件下,随着电场强度和碳纳米管直径的增大,VLi逐渐增加,且在电场强度下的增幅会更显著;碳纳米管端口官能团分别改性为氢原子(–H),羟基(–OH),氨基(–NH2)以及羧基(–COOH)时,VLi会逐步降低;随着温度的增大,VLi先增加后减小,但整体波动偏幅不大.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回