搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声矢量阵宽带目标波束域变换广义似然比检测算法

梁国龙 陶凯 王晋晋 范展

声矢量阵宽带目标波束域变换广义似然比检测算法

梁国龙, 陶凯, 王晋晋, 范展
PDF
导出引用
导出核心图
  • 为了解决水下声矢量信号处理中的宽带目标被动探测问题, 提出了一种波束域的检测算法. 该算法借鉴人眼对空间谱的检测原理, 对波束域数据进行广义似然比检测. 首先结合干扰抑制问题和矢量环境噪声场特性, 探讨了波束域变换矩阵的设计准则, 并推导了解析解的形式; 然后在假定已知不含目标波束个数的情况下, 构建了波束域的概率密度模型, 并对模型中的未知参量进行最大似然估计, 进而给出了广义似然比检测器的形式; 最后应用信息论准则, 给出了不含目标波束个数的估计方法. 理论分析与仿真实验表明, 该算法在强目标干扰, 以及背景噪声功率谱起伏、时变等环境下, 始终具有更好的系统增益和恒虚警率特性. 湖上试验的结果进一步验证了算法的有效性.
    • 基金项目: 国家自然科学基金(批准号: 51279043, 61201411, 51209059)和水声技术重点实验室基金(批准号: 9140C200203110C2003)资助的课题.
    [1]

    Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [2]

    Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337

    [3]

    Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 144301]

    [4]

    Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 物理学报 63 034306]

    [5]

    Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]

    [6]

    Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46

    [7]

    Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477

    [8]

    Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045

    [9]

    Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615

    [10]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [11]

    Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302

    [12]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 物理学报 63 154303]

    [13]

    You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]

    [14]

    Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]

    [15]

    Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115

    [16]

    Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208

    [17]

    Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336

    [18]

    Shuai X, Kong L, Yang J 2010 Signal Processing 90 16

    [19]

    Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391

    [20]

    Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]

    [21]

    Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]

    [22]

    Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22

    [23]

    Richmond C D 1996 IEEE Trans. Signal Process. 44 305

  • [1]

    Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [2]

    Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337

    [3]

    Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 144301]

    [4]

    Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 物理学报 63 034306]

    [5]

    Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]

    [6]

    Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46

    [7]

    Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477

    [8]

    Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045

    [9]

    Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615

    [10]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [11]

    Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302

    [12]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 物理学报 63 154303]

    [13]

    You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]

    [14]

    Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]

    [15]

    Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115

    [16]

    Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208

    [17]

    Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336

    [18]

    Shuai X, Kong L, Yang J 2010 Signal Processing 90 16

    [19]

    Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391

    [20]

    Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]

    [21]

    Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]

    [22]

    Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22

    [23]

    Richmond C D 1996 IEEE Trans. Signal Process. 44 305

  • [1] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [2] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [3] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [4] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [5] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [6] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [7] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • 引用本文:
    Citation:
计量
  • 文章访问数:  462
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-30
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-05-05

声矢量阵宽带目标波束域变换广义似然比检测算法

  • 1. 哈尔滨工程大学 水声技术重点实验室, 哈尔滨 150001;
  • 2. 哈尔滨工程大学 水声工程学院, 哈尔滨 150001
    基金项目: 

    国家自然科学基金(批准号: 51279043, 61201411, 51209059)和水声技术重点实验室基金(批准号: 9140C200203110C2003)资助的课题.

摘要: 为了解决水下声矢量信号处理中的宽带目标被动探测问题, 提出了一种波束域的检测算法. 该算法借鉴人眼对空间谱的检测原理, 对波束域数据进行广义似然比检测. 首先结合干扰抑制问题和矢量环境噪声场特性, 探讨了波束域变换矩阵的设计准则, 并推导了解析解的形式; 然后在假定已知不含目标波束个数的情况下, 构建了波束域的概率密度模型, 并对模型中的未知参量进行最大似然估计, 进而给出了广义似然比检测器的形式; 最后应用信息论准则, 给出了不含目标波束个数的估计方法. 理论分析与仿真实验表明, 该算法在强目标干扰, 以及背景噪声功率谱起伏、时变等环境下, 始终具有更好的系统增益和恒虚警率特性. 湖上试验的结果进一步验证了算法的有效性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回