搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温应变下的晶界湮没机理的晶体相场法研究

高英俊 秦河林 周文权 邓芊芊 罗志荣 黄创高

引用本文:
Citation:

高温应变下的晶界湮没机理的晶体相场法研究

高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高

Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature

Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao
PDF
导出引用
  • 应用晶体相场方法研究高温应变下的预熔化晶界位错湮没机理. 结果表明, 原预熔化晶界上的位错在应变作用下发生分离运动, 形成新晶界, 即亚晶界. 该过程的实质是生成了亚晶粒; 亚晶界的迁移过程的本质是亚晶粒长大、吞噬旧晶粒的过程; 亚晶界之间的湮没是亚晶粒完全吞噬旧晶粒过程的结束, 体系转变成为单个晶粒结构. 根据原子密度序参数沿x和y方向的投影值随应变量的变化特征, 可以揭示出高温应变作用下, 预熔化亚晶界相遇湮没的本质是两对极性相反的偶极子位错对发生二次湮没, 该湮没的微观过程是通过位错连续二次滑移湮没而实现的, 其湮没的速率较低温时的湮没速率要小许多.
    Grain boundary (GB) research is always the most fundamental and active study field in interface science. Grain boundary premelting (GBPM) is induced as a consequence of local inner strain around defects in material at high temperature. When GB premelting is under an external stress, it is referred to as stress induced GBPM (SIGBPM). Owing to the fact that the width of a GB usually is a few atoms thick, it is difficult to observe the GBPM directly in experiment, thus the development of computational simulation experiment can make up for the shortcomings in experiment. For this reason, a new method which is named phase field crystal (PFC) model based on density functional theory is proposed. Because the method can be used to simulate the evolution of macroscopic structure of polycrystalline material on a diffusive time and atomic scale, therefore, PFC has a great advantage in simulating the evolution of microstructure. In this paper, PFC method is used to investigate the annihilation process of dislocation pairs of premelted grain boundary under strain at high temperature. Simulated results show that the essence of separation process of sub-GB (SGB) from original GB is that sub-grain structures are generated. The SGB migration is the process of the new grain swallowing up the old one. The annihilation process of GBPM under applied strain at high temperature can be divided into two stage features. The first stage is the stage of system energy increasing, which is corresponding to the process of SGB migration, dislocation gliding; the second stage is the energy decreasing, which corresponds to the interaction of SGBs and annihilation of dislocations, while the speed of annihilation in this process is slow and the peak of energy curve is wide and smooth. According to the changing process of the atomic density distribution projected along the directions of x and y axis with strain increasing, we can reveal that the nature of annihilation of double dislocation pairs at high temperature is the process of two-step annihilations, of which the detailed process is not easy to observe at low temperature due to its fast annihilating speed of dislocation pairs.
    • 基金项目: 国家自然科学基金(批准号: 51161003)、广西自然科学重点基金(批准号:2012GXNSFDA053001)、 广西有色金属及特色材料加工重点实验室开放基金(批准号: GXKFJ12-01) 和广西研究生教育创新计划项目基金(批准号: YCSZ2014039)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 51161003), the Nature Science Foundation of Guangxi Province (Grant No. 2012GXNSFDA053001), the Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials of Guangxi, China (Grant No. GXKFJ12-01) and the Education Innovation Foundation of Postgraduate of Guangxi, China (Grant No. YCSZ2014039).
    [1]

    Straumal B B, Zieba P, Gust W 2001 Int. J. Inorganic Mater. 3 1113

    [2]

    Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P, Czeppe T, Wojewoda-Budka J, Faryna M 2008 Mater. Sci. Engin. A 495 126

    [3]

    Luo J 2008 Curr. Opinion Solid State Mater. Sci. 12 81

    [4]

    Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G 2005 Science 309 1207

    [5]

    Tallon J L 1978 Nature 276 849

    [6]

    Bartis F J 1977 Nature 268 427

    [7]

    Oxtoby D W 1990 Nature 347 725

    [8]

    Pusey P N 2005 Science 309 1198

    [9]

    Hsieh T E, Balluffi R W 1989 Acta Metall. 37 1637

    [10]

    Lu K, Sheng H W, Jin Z H 1997 Chin. J. Mater. Res. 11 654 (in Chinese) [卢柯, 生红卫, 金朝晖 1997 材料研究学报 11 654]

    [11]

    Chaudron G, Lacombe P, Yannaquis N 1948 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences (Paris) 226 1372

    [12]

    Balluffi R W, Maurer R 1988 Scrip. Metall. 22 709

    [13]

    Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W 2005 Phys. Rev. B 71 104104

    [14]

    Mu J W, Sun S C, Jiang Z H 2013 Chin. Phys. B 22 037303

    [15]

    Wang N, Mokadem S, Rappaz M, Kurz W 2004 Acta Mater. 52 3173

    [16]

    Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T 1997 Interf. Sci. 4 263

    [17]

    Inoko F, Hama T, Tagami M, Yoshikawa T 1991 Ultramicroscopy 39 118

    [18]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [19]

    Williams P L, Mishin Y 2009 Acta Mater. 57 3786

    [20]

    Frolov T, Mishin Y 2009 Phys. Rev. B 79 174110

    [21]

    Keblinski P, Phillpot S R, Wolf D, Gleiter H 1997 Acta Mater. 45 987

    [22]

    Besold G, Mouritsen O G 1994 Phys. Rev. B 50 6573

    [23]

    Qi Y, Krajewski P E 2007 Acta Mater. 55 1555

    [24]

    Wang H L, Wang X X, Liang H Y 2005 Acta Phys. Sin. 54 4836 (in Chinese) [王海龙, 王秀喜, 梁海戈 2005 物理学报 54 4836]

    [25]

    Lobkovsky A E, Warren J A 2002 Physica D 164 202

    [26]

    MishinY, Boettinger W J, Warren J A, McFadden G B 2009 Acta Mater. 57 3771

    [27]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [28]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605

    [29]

    Yu Y M, Backofen R, Voigt A 2011 J. Cryst. Growth 318 18

    [30]

    Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T 2012 Phys. Rev. Lett. 108 226102

    [31]

    Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185

    [32]

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507]

    [33]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601

    [34]

    Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501

    [35]

    Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin. J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]

    [36]

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]

    [37]

    Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G 2014 Acta Metall. Sin. 50 110 (in Chinese) [高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高 2014 金属学报 50 110]

    [38]

    Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Computat. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]

    [39]

    Mellenthin J, Karma A, Plapp M 2008 Phys. Rev. B 78 184110

    [40]

    Gao Y J, Deng Q Q, Quan S L, Zhou W Q, Huang C G 2014 Front. Mater. Sci. 8 176

    [41]

    Hirouchi T, Takaki T, Tomita Y 2009 Computat. Mater. Sci. 44 1192

    [42]

    Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320

    [43]

    Adland A, Karma A, Spatschek R, Buta D, Asta M 2013 Phys. Rev. B 87 024110

    [44]

    Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101

    [45]

    Spatschek R, Adland A, Karma A 2013 Phys. Rev. B 87 024109

    [46]

    Berry J, Elder K R, Grant M 2008 Phys. Rev.B 77 224114

    [47]

    Spatschek R, Karma A 2010 Phys. Rev. B 81 214201

    [48]

    Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]

    [49]

    Gao Y J, Zhou W Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]

    [50]

    Cheng M, Warren J A 2008 J. Computat. Phys. 227 6241

    [51]

    Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]

    [52]

    Hirth J P, Pond R C, Lothe J 2006 Acta Mater. 54 4237

    [53]

    Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese) [龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮 2013 物理学报 62 218101]

    [54]

    Hirth J P, Lothe J 1968 Theory of Dislocations (New York: McGraw-Hill Inc. Press) pp250-350

  • [1]

    Straumal B B, Zieba P, Gust W 2001 Int. J. Inorganic Mater. 3 1113

    [2]

    Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P, Czeppe T, Wojewoda-Budka J, Faryna M 2008 Mater. Sci. Engin. A 495 126

    [3]

    Luo J 2008 Curr. Opinion Solid State Mater. Sci. 12 81

    [4]

    Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G 2005 Science 309 1207

    [5]

    Tallon J L 1978 Nature 276 849

    [6]

    Bartis F J 1977 Nature 268 427

    [7]

    Oxtoby D W 1990 Nature 347 725

    [8]

    Pusey P N 2005 Science 309 1198

    [9]

    Hsieh T E, Balluffi R W 1989 Acta Metall. 37 1637

    [10]

    Lu K, Sheng H W, Jin Z H 1997 Chin. J. Mater. Res. 11 654 (in Chinese) [卢柯, 生红卫, 金朝晖 1997 材料研究学报 11 654]

    [11]

    Chaudron G, Lacombe P, Yannaquis N 1948 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences (Paris) 226 1372

    [12]

    Balluffi R W, Maurer R 1988 Scrip. Metall. 22 709

    [13]

    Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W 2005 Phys. Rev. B 71 104104

    [14]

    Mu J W, Sun S C, Jiang Z H 2013 Chin. Phys. B 22 037303

    [15]

    Wang N, Mokadem S, Rappaz M, Kurz W 2004 Acta Mater. 52 3173

    [16]

    Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T 1997 Interf. Sci. 4 263

    [17]

    Inoko F, Hama T, Tagami M, Yoshikawa T 1991 Ultramicroscopy 39 118

    [18]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [19]

    Williams P L, Mishin Y 2009 Acta Mater. 57 3786

    [20]

    Frolov T, Mishin Y 2009 Phys. Rev. B 79 174110

    [21]

    Keblinski P, Phillpot S R, Wolf D, Gleiter H 1997 Acta Mater. 45 987

    [22]

    Besold G, Mouritsen O G 1994 Phys. Rev. B 50 6573

    [23]

    Qi Y, Krajewski P E 2007 Acta Mater. 55 1555

    [24]

    Wang H L, Wang X X, Liang H Y 2005 Acta Phys. Sin. 54 4836 (in Chinese) [王海龙, 王秀喜, 梁海戈 2005 物理学报 54 4836]

    [25]

    Lobkovsky A E, Warren J A 2002 Physica D 164 202

    [26]

    MishinY, Boettinger W J, Warren J A, McFadden G B 2009 Acta Mater. 57 3771

    [27]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [28]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605

    [29]

    Yu Y M, Backofen R, Voigt A 2011 J. Cryst. Growth 318 18

    [30]

    Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T 2012 Phys. Rev. Lett. 108 226102

    [31]

    Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185

    [32]

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507]

    [33]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601

    [34]

    Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501

    [35]

    Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin. J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]

    [36]

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]

    [37]

    Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G 2014 Acta Metall. Sin. 50 110 (in Chinese) [高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高 2014 金属学报 50 110]

    [38]

    Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Computat. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]

    [39]

    Mellenthin J, Karma A, Plapp M 2008 Phys. Rev. B 78 184110

    [40]

    Gao Y J, Deng Q Q, Quan S L, Zhou W Q, Huang C G 2014 Front. Mater. Sci. 8 176

    [41]

    Hirouchi T, Takaki T, Tomita Y 2009 Computat. Mater. Sci. 44 1192

    [42]

    Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320

    [43]

    Adland A, Karma A, Spatschek R, Buta D, Asta M 2013 Phys. Rev. B 87 024110

    [44]

    Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101

    [45]

    Spatschek R, Adland A, Karma A 2013 Phys. Rev. B 87 024109

    [46]

    Berry J, Elder K R, Grant M 2008 Phys. Rev.B 77 224114

    [47]

    Spatschek R, Karma A 2010 Phys. Rev. B 81 214201

    [48]

    Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]

    [49]

    Gao Y J, Zhou W Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]

    [50]

    Cheng M, Warren J A 2008 J. Computat. Phys. 227 6241

    [51]

    Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]

    [52]

    Hirth J P, Pond R C, Lothe J 2006 Acta Mater. 54 4237

    [53]

    Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese) [龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮 2013 物理学报 62 218101]

    [54]

    Hirth J P, Lothe J 1968 Theory of Dislocations (New York: McGraw-Hill Inc. Press) pp250-350

  • [1] 王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青. 温度弱敏感光纤高温压力传感器. 物理学报, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟. 物理学报, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [3] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响. 物理学报, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [4] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [5] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [8] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究. 物理学报, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [9] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟. 物理学报, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [10] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [11] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [12] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响. 物理学报, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [13] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [14] 郭耀麟, 王锦程, 王志军, 唐赛, 周尧和. 噪声对均质形核过程影响的晶体相场法研究. 物理学报, 2012, 61(14): 146401. doi: 10.7498/aps.61.146401
    [15] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [16] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [17] 张琪, 王锦程, 张亚丛, 杨根仓. 多晶凝固及后续调幅分解过程的晶体相场法模拟. 物理学报, 2011, 60(8): 088104. doi: 10.7498/aps.60.088104
    [18] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化. 物理学报, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [19] 樊振军, 耿学文, 孔文婕, 金贻荣. D相AlCuCo准晶各向异性热电势的测量. 物理学报, 2009, 58(10): 7119-7123. doi: 10.7498/aps.58.7119
    [20] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
计量
  • 文章访问数:  5573
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-29
  • 修回日期:  2014-11-30
  • 刊出日期:  2015-05-05

/

返回文章
返回