搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤叠栅的全光纤声光可调谐滤波器的特性分析

刘超 裴丽 吴良英 王一群 翁思俊 余少伟

基于光纤叠栅的全光纤声光可调谐滤波器的特性分析

刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟
PDF
导出引用
  • 本文提出了一种基于光纤叠栅的全光纤声光可调谐滤波器, 与普通光纤布拉格光栅型全光纤声光可调谐滤波器相比, 该滤波器能够对光纤叠栅的两个中心波长进行同步调制. 理论分析了声波频率和声致应变幅度对基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱的影响, 结果表明, 各阶次反射峰分别以两个主反射峰为中心呈对称关系, 且主反射峰与其所调制出的次反射峰之间的波长间隔与声波频率成正比, 而两个主反射峰所调制出的同阶次反射峰之间的波长间隔与声波频率无关; 声致应变幅度主要影响主反射峰及次反射峰的反射率的变化. 实验中, 分别测试声波频率为390 kHz和710 kHz的基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱, 实验结果的变化趋势与仿真分析结果相一致.
      通信作者: 裴丽, lipei@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275076)资助的课题.
    [1]

    Cuadrado-Laborde C, Díez A, Andrés M V, Cruz J L, Bello-Jiménez M 2011 Opt. Photon. News 22 36

    [2]

    Zhang W D, Huang L G, Gao F, Bo F, Zhang G Q, Xu J J 2013 Opt. Express 21 16621

    [3]

    Wang D Y, Wang Y M, Gong J M, Wang A B 2011 Opt. Lett. 36 3392

    [4]

    Oliveira R A, Canning J, Cook K, Nashqbandi M, Pohl A A P 2011 Sensors Actuat. B-Chem. 157 621

    [5]

    Zhang W D, Gao F, Bo F, Wu Q, Zhang G Q, Xu J J 2011 Opt. Lett. 36 271

    [6]

    Lim S D, Park K J, Eom S, Jeong J-M, Kim B Y, Lee S B 2011 Opt. Lett. 36 1101

    [7]

    Lee K J, Hwang I-K, Park H C, Kim B Y 2010 Opt. Express 18 12059

    [8]

    Liu W F, Russell P S J, Dong L 1997 Opt. Lett. 22 1515

    [9]

    Marques C A F, Bilro L, Kahn L, Oliveira R A, Webb D J, Nogueira R N 2013 J. Lightwave Technol. 31 1551

    [10]

    Li J, Ning T G, Pei L, Qi C H 2009 Opt. Lett. 34 3136

    [11]

    Li J, Ning T G, Pei L, Qi C H, Hu X D, Zhou Q 2010 IEEE Photonic. Tech. L. 22 516

    [12]

    Li Q, Yan F P, Peng W J, Feng T, Feng S C, Tan S Y, Liu P, Ren W H 2012 Opt. Express 20 23684

    [13]

    Zhang J H, Qiao X G, Feng Z Y, Hu M L, Gao H, Zhou R, Yang Y 2012 Acta Phys. Sin. 61 054215 (in Chinese) [张敬花, 乔学光, 冯忠耀, 忽满利, 高宏, 周锐, 杨扬 2012 物理学报 61 054215]

    [14]

    Nan Q M, Song L 2014 Chin. Opt. Lett. 12 S12302

    [15]

    Zhang X L, Zhang F X, Li S J, Wang M, Wang L J, Song Z Q, Sun Z H, Qi H F, Wang C, Peng G D 2014 Chin. Opt. Lett. 12 S10608

    [16]

    Li Z X, Pei L, Liu C, Ning T G, Yu S W 2012 Appl. Opt. 51 7314

    [17]

    Russell P S J 2000 J. Opt. Soc. Am. A 17 1421

    [18]

    Oliveira R A, Neves Jr P T, Pereira J T, Pohl A A P 2008 Opt. Commun. 281 4899

    [19]

    Liu C, Pei L, Li Z X, Ning T G, Gao S, Kang Z X, Sun J 2013 Acta Phys. Sin. 62 034208 (in Chinese) [刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将 2013 物理学报 62 034208]

    [20]

    Liu C, Pei L, Li Z X, Ning T G, Yu S W, Kang Z X 2013 Appl. Opt. 52 3318

    [21]

    Wu L Y, Pei L, Liu C, Wang Y Q, Weng S J, Wang J S 2014 Chin. Phys. B 23 110702

    [22]

    Delgado-Pinar M, Diez A, Cruz J L, Andres M V 2007 Appl. Phys. Lett. 90 171110

    [23]

    Cuadrado-Laborde C, Diez A, Delgado-Pinar M, Cruz J L, Andr 閟 M V 2009 Opt. Lett. 34 1111

    [24]

    Marques C A F, Oliveira R A, Pohl A A P, Nogueira R N 2013 Opt. Fiber Technol. 19 121

    [25]

    Zeng X K, Rao Y J 2010 Acta Phys. Sin. 59 8597 (in Chinese) [曾祥楷, 饶云江 2010 物理学报 59 8597]

    [26]

    Zeng X K, Liang K 2011 Opt. Express 19 22797

  • [1]

    Cuadrado-Laborde C, Díez A, Andrés M V, Cruz J L, Bello-Jiménez M 2011 Opt. Photon. News 22 36

    [2]

    Zhang W D, Huang L G, Gao F, Bo F, Zhang G Q, Xu J J 2013 Opt. Express 21 16621

    [3]

    Wang D Y, Wang Y M, Gong J M, Wang A B 2011 Opt. Lett. 36 3392

    [4]

    Oliveira R A, Canning J, Cook K, Nashqbandi M, Pohl A A P 2011 Sensors Actuat. B-Chem. 157 621

    [5]

    Zhang W D, Gao F, Bo F, Wu Q, Zhang G Q, Xu J J 2011 Opt. Lett. 36 271

    [6]

    Lim S D, Park K J, Eom S, Jeong J-M, Kim B Y, Lee S B 2011 Opt. Lett. 36 1101

    [7]

    Lee K J, Hwang I-K, Park H C, Kim B Y 2010 Opt. Express 18 12059

    [8]

    Liu W F, Russell P S J, Dong L 1997 Opt. Lett. 22 1515

    [9]

    Marques C A F, Bilro L, Kahn L, Oliveira R A, Webb D J, Nogueira R N 2013 J. Lightwave Technol. 31 1551

    [10]

    Li J, Ning T G, Pei L, Qi C H 2009 Opt. Lett. 34 3136

    [11]

    Li J, Ning T G, Pei L, Qi C H, Hu X D, Zhou Q 2010 IEEE Photonic. Tech. L. 22 516

    [12]

    Li Q, Yan F P, Peng W J, Feng T, Feng S C, Tan S Y, Liu P, Ren W H 2012 Opt. Express 20 23684

    [13]

    Zhang J H, Qiao X G, Feng Z Y, Hu M L, Gao H, Zhou R, Yang Y 2012 Acta Phys. Sin. 61 054215 (in Chinese) [张敬花, 乔学光, 冯忠耀, 忽满利, 高宏, 周锐, 杨扬 2012 物理学报 61 054215]

    [14]

    Nan Q M, Song L 2014 Chin. Opt. Lett. 12 S12302

    [15]

    Zhang X L, Zhang F X, Li S J, Wang M, Wang L J, Song Z Q, Sun Z H, Qi H F, Wang C, Peng G D 2014 Chin. Opt. Lett. 12 S10608

    [16]

    Li Z X, Pei L, Liu C, Ning T G, Yu S W 2012 Appl. Opt. 51 7314

    [17]

    Russell P S J 2000 J. Opt. Soc. Am. A 17 1421

    [18]

    Oliveira R A, Neves Jr P T, Pereira J T, Pohl A A P 2008 Opt. Commun. 281 4899

    [19]

    Liu C, Pei L, Li Z X, Ning T G, Gao S, Kang Z X, Sun J 2013 Acta Phys. Sin. 62 034208 (in Chinese) [刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将 2013 物理学报 62 034208]

    [20]

    Liu C, Pei L, Li Z X, Ning T G, Yu S W, Kang Z X 2013 Appl. Opt. 52 3318

    [21]

    Wu L Y, Pei L, Liu C, Wang Y Q, Weng S J, Wang J S 2014 Chin. Phys. B 23 110702

    [22]

    Delgado-Pinar M, Diez A, Cruz J L, Andres M V 2007 Appl. Phys. Lett. 90 171110

    [23]

    Cuadrado-Laborde C, Diez A, Delgado-Pinar M, Cruz J L, Andr 閟 M V 2009 Opt. Lett. 34 1111

    [24]

    Marques C A F, Oliveira R A, Pohl A A P, Nogueira R N 2013 Opt. Fiber Technol. 19 121

    [25]

    Zeng X K, Rao Y J 2010 Acta Phys. Sin. 59 8597 (in Chinese) [曾祥楷, 饶云江 2010 物理学报 59 8597]

    [26]

    Zeng X K, Liang K 2011 Opt. Express 19 22797

  • [1] 刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将. 光纤布拉格光栅型全光纤声光调制器的特性研究. 物理学报, 2013, 62(3): 034208. doi: 10.7498/aps.62.034208
    [2] 吕百达, 王喜庆. 贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输. 物理学报, 2001, 50(4): 682-685. doi: 10.7498/aps.50.682
    [3] 王豆豆, 王丽莉. 新型光学聚合物——Topas环烯烃共聚物微结构光纤的设计及特性分析. 物理学报, 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [4] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [5] 林郁正, 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [6] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响. 物理学报, 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [7] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [8] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [9] 周建华, 李栋华, 曾阳素, 朱鸿鹏. 梯度负折射率介质中高斯光束传输特性的研究. 物理学报, 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [10] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究. 物理学报, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [11] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究. 物理学报, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [12] 李杨, 朱竹青, 王晓雷, 贡丽萍, 冯少彤, 聂守平. 离轴椭圆矢量光场传输中的光斑演变. 物理学报, 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [13] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [14] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [15] 季小玲, 汤明玥. 一维线阵离轴高斯光束通过湍流大气的传输特性. 物理学报, 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [16] 张树仁, 卢俊, 汪剑波, 方春易, 孙连春. 一种圆孔单元厚屏频率选择表面结构的传输特性研究. 物理学报, 2010, 59(7): 5023-5027. doi: 10.7498/aps.59.5023
    [17] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究. 物理学报, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [18] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [19] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导. 物理学报, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [20] 唐光明, 苗俊刚, 董金明. 一种介质-金属加载圆孔单元厚屏频率选择表面. 物理学报, 2012, 61(6): 068402. doi: 10.7498/aps.61.068402
  • 引用本文:
    Citation:
计量
  • 文章访问数:  748
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-03-22
  • 刊出日期:  2015-09-05

基于光纤叠栅的全光纤声光可调谐滤波器的特性分析

  • 1. 北京交通大学全光网络与现代通信网教育部重点实验室, 光波技术研究所, 北京 100044
  • 通信作者: 裴丽, lipei@bjtu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61275076)资助的课题.

摘要: 本文提出了一种基于光纤叠栅的全光纤声光可调谐滤波器, 与普通光纤布拉格光栅型全光纤声光可调谐滤波器相比, 该滤波器能够对光纤叠栅的两个中心波长进行同步调制. 理论分析了声波频率和声致应变幅度对基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱的影响, 结果表明, 各阶次反射峰分别以两个主反射峰为中心呈对称关系, 且主反射峰与其所调制出的次反射峰之间的波长间隔与声波频率成正比, 而两个主反射峰所调制出的同阶次反射峰之间的波长间隔与声波频率无关; 声致应变幅度主要影响主反射峰及次反射峰的反射率的变化. 实验中, 分别测试声波频率为390 kHz和710 kHz的基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱, 实验结果的变化趋势与仿真分析结果相一致.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回