搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序

王强

电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序

王强
PDF
导出引用
导出核心图
  • 利用溶胶-凝胶技术制备了不同晶粒尺寸的Bi0.2Ca0.8MnO3, 通过电子自旋共振研究了晶粒尺寸效应对Bi0.2Ca0.8MnO3电荷有序和自旋关联的影响. 电子自旋共振强度研究表明: 晶粒尺寸的减小削弱了长程电荷有序转变, 当晶粒尺寸减小到40 nm 时, 长程电荷有序转变完全消失; 在顺磁区域, 激活能随着晶粒尺寸的减小增加, 表明铁磁耦合增强. 所有样品线宽与温度曲线显示出典型的电荷有序特征, 这表明在40 nm样品中短程电荷有序态仍然存在, 电荷有序态强度不受晶粒尺寸减小的影响. 在高温顺磁区域, 居里-外斯温度随着晶粒尺寸的减小而降低, 表明晶粒尺寸减小削弱了铁磁相互作用. 因此, 电荷有序态的压制不能归因于Bi0.2Ca0.8MnO3纳米晶粒中铁磁双交换作用的增强. 在纳米尺度的电荷有序锰氧化物中, 无序的表面自旋破坏了表面反铁磁排列构型, 从而引起了表面铁磁层. 晶粒尺寸减小对长程反铁磁电荷有序的削弱比对短程铁磁有序的削弱更加显著, 铁磁有序将逐渐占据优势, 这使得电子自旋共振强度曲线上电荷有序转变峰消失.
      通信作者: 王强, qwangxj@163.com
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2011JM1018)资助的课题.
    [1]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1

    [2]

    Kuwahara H, Okuda T, Tomioka Y, Asamitsu A, Tokura Y 1999 Phys. Rev. Lett. 82 4316

    [3]

    Mori S, Chen C H, Cheong S W 1998 Nature 392 473

    [4]

    Kuwahara H, Moritomo Y, Tomioka Y, Asamitsu A, Kasai M, Kumai R, Tokura Y 1997 Phys. Rev. B 56 9386

    [5]

    Li X J, Wang Q 2009 Acta Phys. Sin. 58 6482(in Chinese) [李晓娟, 王强 2009 物理学报 58 6482]

    [6]

    Zhang T, Dressel M 2009 Phys. Rev. B 80 014435

    [7]

    Zhou S M, Shi L, Yang H P, Wang Y, He L F, Zhao J Y 2008 Appl. Phys. Lett. 93 182509

    [8]

    Zhou S M, Guo Y Q, Zhao J Y, He L F, Wang C L, Shi L 2011 J. Phys. Chem. C 115 11500

    [9]

    Kirste A, Goiran M, Respaud M, Vanaken J, Broto J M, Rakoto H, von Ortenberg M, Frontera C, García-Muñoz J L 2003 Phys. Rev. B 67 134413

    [10]

    García-Muñoz J L, Frontera C, Aranda M A G, Llobet A, Ritter C 2001 Phys. Rev. B 63 064415

    [11]

    Hill N A, Rabe K M 1999 Phys. Rev. B 59 8759

    [12]

    Murakami Y, Shindo D, Chiba H, Kikuchi M, Syono Y 1997 Phys. Rev. B 55 15043

    [13]

    Bao W, Axe J D, Chen C H, Cheong S W 1997 Phys. Rev. Lett. 78 543

    [14]

    Oseroff S B, Torikachvili M, Singley J, Ali S, Cheong S W, Schultz S 1996 Phys. Rev. B 53 6521

    [15]

    Rozenberg E, Auslender M, Shames A I, Mogilyansky D, Felner I, Sominskii E, Gedanken A, Mukovskii Y M 2008 Phys. Rev. B 78 052405

    [16]

    Kurian J, Singh R 2009 J. Appl. Phys. 105 07D718

    [17]

    Bhowmik R N, Poddar A, Ranganathan R, Mazumdar C 2009 J. Appl. Phys. 105 113909

    [18]

    Gaur A, Varma G D 2006 J. Phys.: Condens. Matter. 18 8837

    [19]

    Jirák Z, Hadová E, Kaman O, Knížek K, Maryško, M, Pollert E 2010 Phys. Rev. B 81 024403

    [20]

    Dong S, Gao F, Wang Z Q, Liu J M, Ren Z F 2007 Appl. Phys. Lett. 90 082508

  • [1]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1

    [2]

    Kuwahara H, Okuda T, Tomioka Y, Asamitsu A, Tokura Y 1999 Phys. Rev. Lett. 82 4316

    [3]

    Mori S, Chen C H, Cheong S W 1998 Nature 392 473

    [4]

    Kuwahara H, Moritomo Y, Tomioka Y, Asamitsu A, Kasai M, Kumai R, Tokura Y 1997 Phys. Rev. B 56 9386

    [5]

    Li X J, Wang Q 2009 Acta Phys. Sin. 58 6482(in Chinese) [李晓娟, 王强 2009 物理学报 58 6482]

    [6]

    Zhang T, Dressel M 2009 Phys. Rev. B 80 014435

    [7]

    Zhou S M, Shi L, Yang H P, Wang Y, He L F, Zhao J Y 2008 Appl. Phys. Lett. 93 182509

    [8]

    Zhou S M, Guo Y Q, Zhao J Y, He L F, Wang C L, Shi L 2011 J. Phys. Chem. C 115 11500

    [9]

    Kirste A, Goiran M, Respaud M, Vanaken J, Broto J M, Rakoto H, von Ortenberg M, Frontera C, García-Muñoz J L 2003 Phys. Rev. B 67 134413

    [10]

    García-Muñoz J L, Frontera C, Aranda M A G, Llobet A, Ritter C 2001 Phys. Rev. B 63 064415

    [11]

    Hill N A, Rabe K M 1999 Phys. Rev. B 59 8759

    [12]

    Murakami Y, Shindo D, Chiba H, Kikuchi M, Syono Y 1997 Phys. Rev. B 55 15043

    [13]

    Bao W, Axe J D, Chen C H, Cheong S W 1997 Phys. Rev. Lett. 78 543

    [14]

    Oseroff S B, Torikachvili M, Singley J, Ali S, Cheong S W, Schultz S 1996 Phys. Rev. B 53 6521

    [15]

    Rozenberg E, Auslender M, Shames A I, Mogilyansky D, Felner I, Sominskii E, Gedanken A, Mukovskii Y M 2008 Phys. Rev. B 78 052405

    [16]

    Kurian J, Singh R 2009 J. Appl. Phys. 105 07D718

    [17]

    Bhowmik R N, Poddar A, Ranganathan R, Mazumdar C 2009 J. Appl. Phys. 105 113909

    [18]

    Gaur A, Varma G D 2006 J. Phys.: Condens. Matter. 18 8837

    [19]

    Jirák Z, Hadová E, Kaman O, Knížek K, Maryško, M, Pollert E 2010 Phys. Rev. B 81 024403

    [20]

    Dong S, Gao F, Wang Z Q, Liu J M, Ren Z F 2007 Appl. Phys. Lett. 90 082508

  • [1] 王强, 李晓娟. 晶粒尺寸对Bi0.2Ca0.8MnO3电荷有序的影响. 物理学报, 2009, 58(9): 6482-6486. doi: 10.7498/aps.58.6482
    [2] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 物理学报, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [3] 王桂英, 郭焕银, 毛强, 杨刚, 彭振生. V替代Mn对La0.45Ca0.55MnO3电荷有序相及自旋玻璃态的影响. 物理学报, 2010, 59(12): 8883-8889. doi: 10.7498/aps.59.8883
    [4] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [5] 王仕鹏, 张金仓, 曹桂新, 俞 坚, 敬 超, 曹世勋. 半掺杂Sm0.5Ca0.5MnO3体系的电荷有序和再入型自旋玻璃行为. 物理学报, 2006, 55(1): 367-371. doi: 10.7498/aps.55.367
    [6] 俞 坚, 张金仓, 曹桂新, 王仕鹏, 敬 超, 曹世勋. 相分离Nd0.5Ca0.5MnO3体系的再入型自旋玻璃行为和电荷有序. 物理学报, 2006, 55(4): 1914-1920. doi: 10.7498/aps.55.1914
    [7] 高惠平, 李 波, 余 勇, 阮可青, 吴柏枚. Nd1.67Sr0.33NiO4中的热导反常. 物理学报, 2004, 53(11): 3853-3857. doi: 10.7498/aps.53.3853
    [8] 刘宁, 严国清, 毛强, 王桂英, 郭焕银. La0.3Ca0.7Mn1-xVxO3体系的有序相和再入型自旋玻璃行为研究. 物理学报, 2010, 59(8): 5759-5765. doi: 10.7498/aps.59.5759
    [9] 赵华英, 杨 欢, 马继云, 方 煦, M. Kamran, 戴耀民, 李 明, 赵柏儒, 邱祥冈. La0.33Pr0.34Ca0.33MnO3薄膜的应变效应. 物理学报, 2008, 57(11): 7168-7172. doi: 10.7498/aps.57.7168
    [10] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 物理学报, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [11] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [12] 王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xGdx)4/3Sr5/3Mn2O7 (x=0, 0.025) 磁性和输运性质研究. 物理学报, 2015, 64(6): 067501. doi: 10.7498/aps.64.067501
    [13] 丁瑞钦, 王浩, 王宁娟, 于英敏, W.F.LAU, W.Y.CHEUNG, S.P.WONG. InP/SiO2纳米复合膜的微观结构和光学性质. 物理学报, 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
    [14] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [15] 李 燕, 王成伟, 田 军, 刘维民, 陈 淼, 力虎林. 钴/氧化铝纳米有序阵列复合结构的光学特性研究. 物理学报, 2004, 53(5): 1594-1598. doi: 10.7498/aps.53.1594
    [16] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究. 物理学报, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [17] 郭焕银, 蔡之让, 刘 宁, 张裕恒. Mn位W掺杂对La0.3Ca0.7MnO3体系磁结构的影响. 物理学报, 2006, 55(2): 865-872. doi: 10.7498/aps.55.865
    [18] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [19] 王 凯, 杨 光, 龙 华, 李玉华, 戴能利, 陆培祥. 金纳米颗粒的有序制备及其光学特性. 物理学报, 2008, 57(6): 3862-3867. doi: 10.7498/aps.57.3862
    [20] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
  • 引用本文:
    Citation:
计量
  • 文章访问数:  618
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-11
  • 修回日期:  2015-07-02
  • 刊出日期:  2015-09-05

电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序

  • 1. 陕西学前师范学院计算机与电子信息系, 西安 710061
  • 通信作者: 王强, qwangxj@163.com
    基金项目: 

    陕西省自然科学基础研究计划(批准号: 2011JM1018)资助的课题.

摘要: 利用溶胶-凝胶技术制备了不同晶粒尺寸的Bi0.2Ca0.8MnO3, 通过电子自旋共振研究了晶粒尺寸效应对Bi0.2Ca0.8MnO3电荷有序和自旋关联的影响. 电子自旋共振强度研究表明: 晶粒尺寸的减小削弱了长程电荷有序转变, 当晶粒尺寸减小到40 nm 时, 长程电荷有序转变完全消失; 在顺磁区域, 激活能随着晶粒尺寸的减小增加, 表明铁磁耦合增强. 所有样品线宽与温度曲线显示出典型的电荷有序特征, 这表明在40 nm样品中短程电荷有序态仍然存在, 电荷有序态强度不受晶粒尺寸减小的影响. 在高温顺磁区域, 居里-外斯温度随着晶粒尺寸的减小而降低, 表明晶粒尺寸减小削弱了铁磁相互作用. 因此, 电荷有序态的压制不能归因于Bi0.2Ca0.8MnO3纳米晶粒中铁磁双交换作用的增强. 在纳米尺度的电荷有序锰氧化物中, 无序的表面自旋破坏了表面反铁磁排列构型, 从而引起了表面铁磁层. 晶粒尺寸减小对长程反铁磁电荷有序的削弱比对短程铁磁有序的削弱更加显著, 铁磁有序将逐渐占据优势, 这使得电子自旋共振强度曲线上电荷有序转变峰消失.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回