搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光照射对2H-SiC晶体电子特性的影响

邓发明

引用本文:
Citation:

强激光照射对2H-SiC晶体电子特性的影响

邓发明

Effect of intense laser irradiation on the electronic properties of 2H-SiC

Deng Fa-Ming
PDF
导出引用
  • 使用基于密度泛函微扰理论的第一原理赝势法, 计算了纤锌矿结构2H-SiC晶体在强激光照射下的电子特性, 分析了其能带结构和电子态分布. 计算结果表明: 2H-SiC平衡晶格参数a 和c随电子温度Te的升高逐渐增大; 电子温度在02.25 eV范围内时, 2H-SiC仍然是间接带隙的半导体晶体, 当Te超过2.25 eV达到2.5 eV以上时, 2H-SiC变为直接带隙的半导体晶体; 随着电子温度升高, 导带底和价带顶向高能量或低能量方向发生了移动, 当电子温度Te大于3.5 eV以后, 价带顶穿越费米能级; 电子温度Te在02.0 eV变化时, 带隙随电子温度升高而增大; Te在2.03.5 eV范围变化时, 带隙随电子温度升高而快速地减少, 表明2H-SiC晶体的金属性随电子温度Te的继续升高而增强. 在Te =0, 5.0 eV 处, 计算了2H-SiC晶体总的电子态密度和分波态密度. 电子结构表明Te =0 eV 时, 2H-SiC 是一个带隙为2.3 eV的半导体; 在Te =5.0 eV时, 带隙已经消失而呈现出金属特性, 表明当电子温度升高时晶体的共价键变弱、金属键增强, 晶体经历了一个熔化过程, 过渡到金属状态.
    By using first-principles with pseudopotentials method based on the density functional perturbation theory, in this paper we calculate the electronic properties of wurtzite 2H-SiC crystal under the strong laser irradiation and analyze the band structure and the density of state. Calculations are performed by using the ABINIT code in the generalized gradient approximation for the exchange-correlation energy. And the input variable tphysel, which is a variable in the ABINIT code and relates to the laser intensity, is used to define a physical temperature of electrons Te. The size of Te is set to simulate the corresponding electron temperature of the crystal when intensive laser irradiates it in an ultrafast time. The high symmetry points selected in the Brillouin zone are along -A-H-K--M-L-H in the energy band calculations. After testing, we can always obtain a good convergence of the total energy when choosing a 20 Hartree cut-off energy and a 442 k-points grid. Then, optimizing the structure, and the structural parameters and the corresponding electronic properties of 2H-SiC in the different electron-temperature conditions are studied using the optimized equilibrium lattice constant. The calculation results indicate that the equilibrium lattice parameters a and c of 2H-SiC gradually increase as the electronic temperature Te goes up. With the electronic temperature going up, the top of valence band is still at , while the bottom of conduction band shifts from the K point with increasing electronic temperature, resulting in the fact that 2H-SiC is still an indirect band-gap semiconductor in a range of 0-2.25 eV and when the electronic temperature reaches 2.25 eV and even more than 2.5 eV, the crystal turns into a direct band-gap semiconductor. With Te rising constantly, the bottom of the conduction band and the top of valence band both move in the direction of high energy or low energy. When Te exceeds 3.5 eV, the top of valence band crosses the Fermi level. When Te varies in a range of 0-2.0 eV, the forbidden bandwidth increases with temperature rising, and when Te varies in a range of 2-3.5 eV, the forbidden bandwidth quickly decreases. This variation shows that the metallic character of 2H-SiC crystals increases with electronic temperature Te rising. The total density of states (DOS) and partial density of states are calculated at Te=0 eV and 5 eV. The DOS figures indicate that 2H-SiC is a semiconductors and its energy gap equals 2.3 eV. At Te =5 eV, the gap disappears, exhibiting metallic properties. This result shows that the crystal covalent bonds weaken and metallic bonds strengthen with temperature rising and the crystal experiences the process of melting, shifting to metallic state.
      通信作者: 邓发明, dfm@scun.edu.cn
    • 基金项目: 国家科技部支撑计划(批准号: 2014GB111001, 2014GB125000)资助的课题.
      Corresponding author: Deng Fa-Ming, dfm@scun.edu.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2014GB111001, 2014GB125000).
    [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [4]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587

    [5]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 77 3149

    [8]

    Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [9]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743

    [10]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

    [11]

    Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 物理学报 64 046301]

    [12]

    Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372

    [13]

    Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. 59 589

    [14]

    Stampfli P, Bennemann K H 1994 Phys. Rev. B 49 7299

    [15]

    Stampfli P, Bennemann K H 1995 Appl. Phys. A 60 191

    [16]

    Dumitrica T, Burzo A, Dou Y, Allen R E 2004 Phys. Status Solidi B 241 2331

    [17]

    Jeschke H O, Garcia M E, Lenzner M, Bonse J, Krger J, Kautek W 2002 Appl. Surf. Sci. 197 839

    [18]

    Matsunami H 2006 Microelectron. Eng. 83 2

    [19]

    Weitzel C E 1998 Mater. Sci. Forum 907 264

    [20]

    Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176

    [21]

    Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mater. Sci. Eng. B 61 330

    [22]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [23]

    Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 物理学报 51 1586]

    [24]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [25]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [26]

    van Camp P E, van Doren V E, Devreese J T 1986 Phys. Rev. B 34 1314

    [27]

    Karch K, Pavone P, Mindi W, Schutt O, Strauch D 1994 Phys. Rev. B 50 17054

    [28]

    Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314

    [29]

    Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S, Petti D A 2007 J. Nucl. Mater. 371 329

    [30]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [31]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [32]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [33]

    Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526

    [34]

    Gromov G G, Kapaev V V, Kopaev Yu V, Rudenko K V 1987 J. Exp. Theor. Phys. Lett. 46 148

    [35]

    Sokolowski-Tinten K, Bialkowski J, Von der Linde D 1995 Phys. Rev. B 51 14186

  • [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [4]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587

    [5]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 77 3149

    [8]

    Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [9]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743

    [10]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

    [11]

    Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 物理学报 64 046301]

    [12]

    Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372

    [13]

    Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. 59 589

    [14]

    Stampfli P, Bennemann K H 1994 Phys. Rev. B 49 7299

    [15]

    Stampfli P, Bennemann K H 1995 Appl. Phys. A 60 191

    [16]

    Dumitrica T, Burzo A, Dou Y, Allen R E 2004 Phys. Status Solidi B 241 2331

    [17]

    Jeschke H O, Garcia M E, Lenzner M, Bonse J, Krger J, Kautek W 2002 Appl. Surf. Sci. 197 839

    [18]

    Matsunami H 2006 Microelectron. Eng. 83 2

    [19]

    Weitzel C E 1998 Mater. Sci. Forum 907 264

    [20]

    Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176

    [21]

    Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mater. Sci. Eng. B 61 330

    [22]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [23]

    Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 物理学报 51 1586]

    [24]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [25]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [26]

    van Camp P E, van Doren V E, Devreese J T 1986 Phys. Rev. B 34 1314

    [27]

    Karch K, Pavone P, Mindi W, Schutt O, Strauch D 1994 Phys. Rev. B 50 17054

    [28]

    Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314

    [29]

    Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S, Petti D A 2007 J. Nucl. Mater. 371 329

    [30]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [31]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [32]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [33]

    Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526

    [34]

    Gromov G G, Kapaev V V, Kopaev Yu V, Rudenko K V 1987 J. Exp. Theor. Phys. Lett. 46 148

    [35]

    Sokolowski-Tinten K, Bialkowski J, Von der Linde D 1995 Phys. Rev. B 51 14186

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [4] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [5] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [7] 邓发明. 强激光照射对6H-SiC晶体电子特性的影响. 物理学报, 2016, 65(10): 107101. doi: 10.7498/aps.65.107101
    [8] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [9] 邓发明, 高涛, 沈艳红, 龚艳蓉. 强激光辐照对3C-SiC晶体结构稳定性的影响. 物理学报, 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [10] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [11] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [12] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [13] 刘铖铖, 曹全喜. Y3Al5O12的热输运性质的第一性原理研究. 物理学报, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [14] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [15] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [16] 葛桂贤, 罗有华. 密度泛函理论研究MgnOn(n=2—8)团簇的结构和电子性质. 物理学报, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [17] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 黄伟其, 刘世荣. 激光照射下的低温氧化生成锗的纳米结构及其特性. 物理学报, 2005, 54(2): 972-976. doi: 10.7498/aps.54.972
    [20] 夏生杰, 王春奎, 傅裕寿, 吴宝根, 方慧英, 周光地. 强CO2激光照射靶面的现象. 物理学报, 1982, 31(3): 397-403. doi: 10.7498/aps.31.397
计量
  • 文章访问数:  4198
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-07-25
  • 刊出日期:  2015-11-05

/

返回文章
返回