搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究

颜送灵 唐黎明 赵宇清

不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究

颜送灵, 唐黎明, 赵宇清
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算, 研究了(LaMnO3)n/(SrTiO3)m(LMO/STO)异质界面的离子弛豫、电子结构和磁性质. 研究表明, 不同组分厚度比及界面类型时, 离子弛豫程度各不相同, 并且界面处的电子性质受此影响较大. 对于n型界面, 当LMO的厚度达到6个单胞层后, 电子会从LMO转移到STO, 转移的电子占据界面层Ti原子的3d电子轨道, 界面处出现二维电子气. 对于n型界面(LMO)n/(STO)2, 随着LMO厚度数n的增加, 由离子弛豫造成的结构畸变减小, 而界面处Ti原子周围电子的态密度和自旋极化却增大, 表明高厚度比的n型界面有利于产生高迁移率的二维电子气和自旋极化. 而对于p型(LMO)2/(STO)8界面, 在STO一侧基本没有结构畸变, 界面处无电子转移和自旋极化现象. 通过计算平均静电势发现n型和p型界面处的势差大小相差2 eV, 解释了p型界面不容易发生电荷转移的原因.
      通信作者: 唐黎明, lmtang@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11347022)资助的课题.
    [1]

    Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762

    [2]

    Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646

    [3]

    Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 物理学报 64 067501]

    [4]

    Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694

    [7]

    Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207

    [8]

    Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018

    [9]

    Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108

    [10]

    Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

    [11]

    Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423

    [12]

    Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804

    [13]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [14]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [15]

    Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886

    [16]

    Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825

    [17]

    Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156

    [18]

    Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080

    [19]

    Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401

    [20]

    Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902

    [21]

    Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283

    [22]

    Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301

    [23]

    Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865

    [26]

    Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674

    [29]

    Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104

    [30]

    Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101

    [31]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [32]

    Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778

    [33]

    Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627

    [34]

    Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113

    [35]

    Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552

    [36]

    Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

  • [1]

    Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762

    [2]

    Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646

    [3]

    Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 物理学报 64 067501]

    [4]

    Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694

    [7]

    Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207

    [8]

    Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018

    [9]

    Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108

    [10]

    Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

    [11]

    Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423

    [12]

    Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804

    [13]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [14]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [15]

    Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886

    [16]

    Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825

    [17]

    Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156

    [18]

    Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080

    [19]

    Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401

    [20]

    Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902

    [21]

    Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283

    [22]

    Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301

    [23]

    Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865

    [26]

    Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674

    [29]

    Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104

    [30]

    Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101

    [31]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [32]

    Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778

    [33]

    Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627

    [34]

    Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113

    [35]

    Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552

    [36]

    Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

  • [1] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响. 物理学报, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [2] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [3] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [8] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [9] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [10] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [11] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [12] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [13] 周树兰, 赵显, 江向平, 韩晓东. 立方相Na1/2Bi1/2TiO3和K1/2Bi1/2TiO3的电子结构和结构不稳定性的第一性原理比较研究. 物理学报, 2014, 63(16): 167101. doi: 10.7498/aps.63.167101
    [14] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [15] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [16] 邓娇娇, 刘波, 顾牡. LuI3 闪烁晶体的第一性原理研究. 物理学报, 2013, 62(6): 063101. doi: 10.7498/aps.62.063101
    [17] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [18] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [19] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [20] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1157
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2016-01-21
  • 刊出日期:  2016-04-05

不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究

  • 1. 湖南大学物理与微电子科学学院, 长沙 410082
  • 通信作者: 唐黎明, lmtang@semi.ac.cn
    基金项目: 

    国家自然科学基金(批准号: 11347022)资助的课题.

摘要: 基于密度泛函理论的第一性原理计算, 研究了(LaMnO3)n/(SrTiO3)m(LMO/STO)异质界面的离子弛豫、电子结构和磁性质. 研究表明, 不同组分厚度比及界面类型时, 离子弛豫程度各不相同, 并且界面处的电子性质受此影响较大. 对于n型界面, 当LMO的厚度达到6个单胞层后, 电子会从LMO转移到STO, 转移的电子占据界面层Ti原子的3d电子轨道, 界面处出现二维电子气. 对于n型界面(LMO)n/(STO)2, 随着LMO厚度数n的增加, 由离子弛豫造成的结构畸变减小, 而界面处Ti原子周围电子的态密度和自旋极化却增大, 表明高厚度比的n型界面有利于产生高迁移率的二维电子气和自旋极化. 而对于p型(LMO)2/(STO)8界面, 在STO一侧基本没有结构畸变, 界面处无电子转移和自旋极化现象. 通过计算平均静电势发现n型和p型界面处的势差大小相差2 eV, 解释了p型界面不容易发生电荷转移的原因.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回