搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有聚电解质层圆柱形纳米通道中的电动能量转换效率

刘勇波 菅永军

具有聚电解质层圆柱形纳米通道中的电动能量转换效率

刘勇波, 菅永军
PDF
导出引用
导出核心图
  • 柔性纳米通道是在刚性纳米通道壁面处添加一层带某种电荷的聚电解质层或固定电荷层的纳米通道. 本文在低Zeta势近似下, 通过解析求解电势满足的线性化Poisson-Boltzmann方程和速度满足的Cauchy动量方程, 给出了圆柱形柔性纳米通道中电解质溶液的流向势和电动能量转换效率的解析解. 在表面Zeta势取值相同, 且管径相同(聚电解质层厚度远小于管径前提下)的情形下, 将圆柱形柔性纳米通道和刚性纳米通道中电解质溶液的流向势和电动转换效率进行了比较. 结果表明, 柔性纳米通道中的流向势和转换效率明显高于刚性通道中的流向势和转换效率. 在本文选取的参数范围内, 柔性纳米通道中的电动转换效率比刚性纳米通道中的转换效率提高1.5-3倍.
      通信作者: 菅永军, jianyj@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11472140, 11562014)、内蒙古自治区高等学校青年科技英才支持计划(批准号: NJYT-13-A02)、内蒙古自治区草原英才资助项目(批准号: 12000-12102013) 和非线性力学国家重点实验室开放基金资助的课题.
    [1]

    Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [2]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [3]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [4]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [5]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]

    [6]

    Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 物理学报 64 174702]

    [7]

    Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251

    [8]

    Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601

    [9]

    Davidson C, Xuan X 2008 J. Power Sources 179 297

    [10]

    van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022

    [11]

    Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003

    [12]

    Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905

    [13]

    Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361

    [14]

    Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122

    [15]

    Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443

    [16]

    Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222

    [17]

    Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558

    [18]

    Chen G, Das S 2015 J. Colloid Interface Sci. 445 357

    [19]

    Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582

    [20]

    Ohshima H 1997 J. Colloid Interface Sci. 185 269

    [21]

    Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638

    [22]

    Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158

    [23]

    Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239

    [24]

    Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222

    [25]

    Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105

    [26]

    Chakraborty S, Das S 2008 Phys. Rev. E 77 037303

    [27]

    Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]

    [28]

    Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001

  • [1]

    Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [2]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [3]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [4]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [5]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]

    [6]

    Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 物理学报 64 174702]

    [7]

    Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251

    [8]

    Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601

    [9]

    Davidson C, Xuan X 2008 J. Power Sources 179 297

    [10]

    van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022

    [11]

    Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003

    [12]

    Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905

    [13]

    Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361

    [14]

    Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122

    [15]

    Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443

    [16]

    Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222

    [17]

    Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558

    [18]

    Chen G, Das S 2015 J. Colloid Interface Sci. 445 357

    [19]

    Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582

    [20]

    Ohshima H 1997 J. Colloid Interface Sci. 185 269

    [21]

    Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638

    [22]

    Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158

    [23]

    Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239

    [24]

    Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222

    [25]

    Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105

    [26]

    Chakraborty S, Das S 2008 Phys. Rev. E 77 037303

    [27]

    Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]

    [28]

    Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001

  • [1] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [2] 周城, 王培吉, 张仲, 李萍, 高艳侠. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [3] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [4] 成春芝, 周效信, 曹卫军. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [5] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [6] 鄢 强, 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [7] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [8] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [9] 李培丽, 施伟华, 黄德修, 张新亮. 半导体光放大器中垂直双抽运四波混频效应的理论研究. 物理学报, 2012, 61(8): 084209. doi: 10.7498/aps.61.084209
    [10] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [11] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [12] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究. 物理学报, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [13] 王屹山, 陈国夫, 于连君, 赵尚弘, 赵 卫. 高效、高峰值功率蓝光飞秒脉冲产生研究. 物理学报, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
    [14] 陈黎明, Kazuhisa Nakajima, Toshi Tajima, 徐妙华, 李玉同, 刘运全, 王兆华, 魏志义, 张 杰, 远晓辉, 赵 卫. 超短脉冲强激光与固体靶相互作用中Kα射线的实验研究. 物理学报, 2007, 56(1): 353-358. doi: 10.7498/aps.56.353
    [15] 郑君, 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 王兆华, 盛政明, 魏志义, 张杰, 孟立民, 李英骏. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [16] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析. 物理学报, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [17] 张钧, 裴文兵, 隋成之, 古培俊. 激光柱形腔靶的X射线温度和X射线转换效率. 物理学报, 1991, 40(3): 424-432. doi: 10.7498/aps.40.424
    [18] 刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军. 利用纳米球提高红外波长上转换探测器效率. 物理学报, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [19] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [20] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
  • 引用本文:
    Citation:
计量
  • 文章访问数:  757
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-01-06
  • 刊出日期:  2016-04-05

具有聚电解质层圆柱形纳米通道中的电动能量转换效率

  • 1. 内蒙古大学数学科学学院, 呼和浩特 010021
  • 通信作者: 菅永军, jianyj@imu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11472140, 11562014)、内蒙古自治区高等学校青年科技英才支持计划(批准号: NJYT-13-A02)、内蒙古自治区草原英才资助项目(批准号: 12000-12102013) 和非线性力学国家重点实验室开放基金资助的课题.

摘要: 柔性纳米通道是在刚性纳米通道壁面处添加一层带某种电荷的聚电解质层或固定电荷层的纳米通道. 本文在低Zeta势近似下, 通过解析求解电势满足的线性化Poisson-Boltzmann方程和速度满足的Cauchy动量方程, 给出了圆柱形柔性纳米通道中电解质溶液的流向势和电动能量转换效率的解析解. 在表面Zeta势取值相同, 且管径相同(聚电解质层厚度远小于管径前提下)的情形下, 将圆柱形柔性纳米通道和刚性纳米通道中电解质溶液的流向势和电动转换效率进行了比较. 结果表明, 柔性纳米通道中的流向势和转换效率明显高于刚性通道中的流向势和转换效率. 在本文选取的参数范围内, 柔性纳米通道中的电动转换效率比刚性纳米通道中的转换效率提高1.5-3倍.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回