搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有聚电解质层圆柱形纳米通道中的电动能量转换效率

刘勇波 菅永军

具有聚电解质层圆柱形纳米通道中的电动能量转换效率

刘勇波, 菅永军
PDF
导出引用
导出核心图
  • 柔性纳米通道是在刚性纳米通道壁面处添加一层带某种电荷的聚电解质层或固定电荷层的纳米通道. 本文在低Zeta势近似下, 通过解析求解电势满足的线性化Poisson-Boltzmann方程和速度满足的Cauchy动量方程, 给出了圆柱形柔性纳米通道中电解质溶液的流向势和电动能量转换效率的解析解. 在表面Zeta势取值相同, 且管径相同(聚电解质层厚度远小于管径前提下)的情形下, 将圆柱形柔性纳米通道和刚性纳米通道中电解质溶液的流向势和电动转换效率进行了比较. 结果表明, 柔性纳米通道中的流向势和转换效率明显高于刚性通道中的流向势和转换效率. 在本文选取的参数范围内, 柔性纳米通道中的电动转换效率比刚性纳米通道中的转换效率提高1.5-3倍.
      通信作者: 菅永军, jianyj@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11472140, 11562014)、内蒙古自治区高等学校青年科技英才支持计划(批准号: NJYT-13-A02)、内蒙古自治区草原英才资助项目(批准号: 12000-12102013) 和非线性力学国家重点实验室开放基金资助的课题.
    [1]

    Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [2]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [3]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [4]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [5]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]

    [6]

    Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 物理学报 64 174702]

    [7]

    Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251

    [8]

    Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601

    [9]

    Davidson C, Xuan X 2008 J. Power Sources 179 297

    [10]

    van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022

    [11]

    Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003

    [12]

    Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905

    [13]

    Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361

    [14]

    Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122

    [15]

    Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443

    [16]

    Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222

    [17]

    Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558

    [18]

    Chen G, Das S 2015 J. Colloid Interface Sci. 445 357

    [19]

    Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582

    [20]

    Ohshima H 1997 J. Colloid Interface Sci. 185 269

    [21]

    Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638

    [22]

    Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158

    [23]

    Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239

    [24]

    Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222

    [25]

    Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105

    [26]

    Chakraborty S, Das S 2008 Phys. Rev. E 77 037303

    [27]

    Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]

    [28]

    Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001

  • [1]

    Gong L,Wu J K, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [2]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [3]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [4]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [5]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]

    [6]

    Jiang Y T, Qi H T 2015 Acta Phys. Sin. 64 174702 (in Chinese) [姜玉婷, 齐海涛 2015 物理学报 64 174702]

    [7]

    Masliyah J H, Bhattacharjee S 2006 Electrokinetic and Colloid Transport Phenomena (Vol. 1) (Hoboken: Wiley-Interscience) p251

    [8]

    Xue J M, Guo P, Sheng Q 2015 Chin. Phys. B 24 086601

    [9]

    Davidson C, Xuan X 2008 J. Power Sources 179 297

    [10]

    van der Heyden F H J, Bonthuis D J, Stein D 2007 J. Nano Lett. 7 1022

    [11]

    Munshi F, Chakraborty S 2009 J. Phys. Fluids 21 122003

    [12]

    Bandopadhyay A, Chakraborty S 2012 J. Appl. Phys. Lett. 101 043905

    [13]

    Matin M H, Ohshima 2015 J. Colloid Interface Sci. 460 361

    [14]

    Donath E, Voigt E 1986 J. Colloid Interface Sci. 109 122

    [15]

    Ohshima H, Kondo T 1990 J. Colloid Interface Sci. 135 443

    [16]

    Keh H J, Liu Y C 1995 J. Colloid Interface Sci. 172 222

    [17]

    Chanda S, Sinha S, Das S 2014 Soft Matter 10 7558

    [18]

    Chen G, Das S 2015 J. Colloid Interface Sci. 445 357

    [19]

    Bentien A, Okada T, Kjelstrup S 2013 J. Phys. Chem. C 117 1582

    [20]

    Ohshima H 1997 J. Colloid Interface Sci. 185 269

    [21]

    Cao B Y, Sun J, Chen M 2009 Int. J. Molecul. Sci. 10 4638

    [22]

    Wang M, Kang Q, Ben-Naim 2010 J. Anal. Chim. Acta 664 158

    [23]

    Wang M, Liu J, Chen S 2007 Molecul. Simul. 33 239

    [24]

    Lorenz C D, Crozier P S, Anderson J A 2008 J. Phys. Chem. C 112 10222

    [25]

    Qiao R, Aluru N R 2005 J. Appl. Phys. Lett. 86 143105

    [26]

    Chakraborty S, Das S 2008 Phys. Rev. E 77 037303

    [27]

    Zhang Z X, Dong Z N 1998 Mechanics of Viscous Fluids (Beijing: Tsinghua University Press) p65 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学(北京: 清华大学出版社)第65页]

    [28]

    Ohshima H 2009 J. Sci. Technol. Adv. Mater. 10 063001

  • [1] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [2] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [3] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [4] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [5] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [6] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [7] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [8] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  378
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-01-06
  • 刊出日期:  2016-04-20

具有聚电解质层圆柱形纳米通道中的电动能量转换效率

  • 1. 内蒙古大学数学科学学院, 呼和浩特 010021
  • 通信作者: 菅永军, jianyj@imu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11472140, 11562014)、内蒙古自治区高等学校青年科技英才支持计划(批准号: NJYT-13-A02)、内蒙古自治区草原英才资助项目(批准号: 12000-12102013) 和非线性力学国家重点实验室开放基金资助的课题.

摘要: 柔性纳米通道是在刚性纳米通道壁面处添加一层带某种电荷的聚电解质层或固定电荷层的纳米通道. 本文在低Zeta势近似下, 通过解析求解电势满足的线性化Poisson-Boltzmann方程和速度满足的Cauchy动量方程, 给出了圆柱形柔性纳米通道中电解质溶液的流向势和电动能量转换效率的解析解. 在表面Zeta势取值相同, 且管径相同(聚电解质层厚度远小于管径前提下)的情形下, 将圆柱形柔性纳米通道和刚性纳米通道中电解质溶液的流向势和电动转换效率进行了比较. 结果表明, 柔性纳米通道中的流向势和转换效率明显高于刚性通道中的流向势和转换效率. 在本文选取的参数范围内, 柔性纳米通道中的电动转换效率比刚性纳米通道中的转换效率提高1.5-3倍.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回