搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

判定金属玻璃微观结构中的二十面体类团簇

郭古青 吴诗阳 蔡光博 杨亮

判定金属玻璃微观结构中的二十面体类团簇

郭古青, 吴诗阳, 蔡光博, 杨亮
PDF
导出引用
导出核心图
  • 基于Voronoi几何分形法, 分析了理想二十面体团簇和ZrCu二元金属玻璃中各种团簇的结构特点, 提出了一种判定金属玻璃原子结构中二十面体类团簇的方法. 并选取三个ZrCu 非晶成分作为研究对象, 基于Voronoi团簇, 利用该方法提取了各种构型团簇, 证实其中四种构型团簇的基本几何结构与理想二十面体相似, 并具有同样近似于理想二十面体的高致密度、高规则度和高五次对称性, 因此可称之为二十面体类团簇. 此类二十面体类团簇可作为金属玻璃的主要结构单元, 普遍存在于非晶结构中; 二十面体类团簇及其连接能包含几乎所有的原子, 从而形成非晶结构. 研究结果提供了一种新的团簇判定方法, 有助于从微观结构层面分析合金中的非晶形成机理.
      通信作者: 杨亮, yangliang@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1332112, 51471088)、中央高校基本科研业务费专项资金(批准号: NE2015004)、南京航空航天大学博士学位论文创新与创优基金(批准号: BCXJ12-08)、 江苏省研究生培养创新工程项目(批准号: CXLX13_152)和江苏高校优势学科建设工程资助的课题.
    [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Wu Z W, Li M Z, Wang W H, Liu K X 2014 Nat. Commun. 6 6035

    [3]

    Wu F F, Yu P, Bian X L, Tan J, Wang J G, Wang G 2014 Acta Phys. Sin. 63 058101 (in Chinese) [吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚 2014 物理学报 63 058101]

    [4]

    Hu Y, Yan H H, Lin T, Li J F, Zhou Y H 2012 Acta Phys. Sin. 61 087102 (in Chinese) [胡勇, 闫红红, 林涛, 李金富, 周尧和 2012 物理学报 61 087102]

    [5]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [6]

    Miracle D B 2004 Nat. Mater. 3 697

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 075507

    [9]

    Schenk T, Holland M D, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 155501

    [10]

    Wakeda M, Shibutani Y 2010 Acta Mater. 58 3963

    [11]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Finney J L 1977 Nature 266 309

    [14]

    Finney J L 1970 Proc. R. Soc. Ser. A 319 479

    [15]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [16]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [17]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [18]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502

    [19]

    Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M, Wang C Z 2009 Phys. Rev. B 79 144205

    [20]

    Hao S G, Wang C Z, Kramer M J, Ho K M 2010 J. Appl. Phys. 107 053511

    [21]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [22]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [23]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [24]

    Ding J, Cheng Y Q, Ma E 2014 Acta Mater. 69 343

    [25]

    Ward L, Miracle D, Windl W, Senkov O N, Flores K 2013 Phys. Rev. B 88 134205

    [26]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [27]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [28]

    https://en.wikipedia.org/wiki/Stereographic_projection# References [2015-10-19]

    [29]

    Miracle D B 2006 Acta Mater. 54 4317

    [30]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [31]

    Yang L, Xia J H, Wang Q, Dong C, Chen, L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R, Gerward L 2006 Appl. Phys. Lett. 88 241913

    [32]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2006 Appl. Phys. Lett. 88 1

    [33]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

  • [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Wu Z W, Li M Z, Wang W H, Liu K X 2014 Nat. Commun. 6 6035

    [3]

    Wu F F, Yu P, Bian X L, Tan J, Wang J G, Wang G 2014 Acta Phys. Sin. 63 058101 (in Chinese) [吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚 2014 物理学报 63 058101]

    [4]

    Hu Y, Yan H H, Lin T, Li J F, Zhou Y H 2012 Acta Phys. Sin. 61 087102 (in Chinese) [胡勇, 闫红红, 林涛, 李金富, 周尧和 2012 物理学报 61 087102]

    [5]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [6]

    Miracle D B 2004 Nat. Mater. 3 697

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 075507

    [9]

    Schenk T, Holland M D, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 155501

    [10]

    Wakeda M, Shibutani Y 2010 Acta Mater. 58 3963

    [11]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Finney J L 1977 Nature 266 309

    [14]

    Finney J L 1970 Proc. R. Soc. Ser. A 319 479

    [15]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [16]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [17]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [18]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502

    [19]

    Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M, Wang C Z 2009 Phys. Rev. B 79 144205

    [20]

    Hao S G, Wang C Z, Kramer M J, Ho K M 2010 J. Appl. Phys. 107 053511

    [21]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [22]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [23]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [24]

    Ding J, Cheng Y Q, Ma E 2014 Acta Mater. 69 343

    [25]

    Ward L, Miracle D, Windl W, Senkov O N, Flores K 2013 Phys. Rev. B 88 134205

    [26]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [27]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [28]

    https://en.wikipedia.org/wiki/Stereographic_projection# References [2015-10-19]

    [29]

    Miracle D B 2006 Acta Mater. 54 4317

    [30]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [31]

    Yang L, Xia J H, Wang Q, Dong C, Chen, L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R, Gerward L 2006 Appl. Phys. Lett. 88 241913

    [32]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2006 Appl. Phys. Lett. 88 1

    [33]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

  • [1] 苟秉聪, 顾娟, 王山鹰. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [2] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [3] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [4] 张林, 李蔚, 孙海霞, 张彩碚, 徐送宁. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [5] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [6] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 张林, 祁阳, 张宗宁, 赵骞. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [9] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [10] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量. 物理学报, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [11] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算. 物理学报, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [12] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [13] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质. 物理学报, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [14] 郝静安, 郑浩平. Ga6N6团簇结构性质的理论计算研究. 物理学报, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
    [15] 何长春, 廖继海, 杨小宝. 平面团簇稳定结构的蒙特卡罗树搜索. 物理学报, 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [16] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200185
    [17] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [18] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [19] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [20] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1255
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-19
  • 修回日期:  2016-02-06
  • 刊出日期:  2016-05-05

判定金属玻璃微观结构中的二十面体类团簇

  • 1. 南京航空航天大学材料科学与技术学院, 南京 210016
  • 通信作者: 杨亮, yangliang@nuaa.edu.cn
    基金项目: 

    国家自然科学基金(批准号: U1332112, 51471088)、中央高校基本科研业务费专项资金(批准号: NE2015004)、南京航空航天大学博士学位论文创新与创优基金(批准号: BCXJ12-08)、 江苏省研究生培养创新工程项目(批准号: CXLX13_152)和江苏高校优势学科建设工程资助的课题.

摘要: 基于Voronoi几何分形法, 分析了理想二十面体团簇和ZrCu二元金属玻璃中各种团簇的结构特点, 提出了一种判定金属玻璃原子结构中二十面体类团簇的方法. 并选取三个ZrCu 非晶成分作为研究对象, 基于Voronoi团簇, 利用该方法提取了各种构型团簇, 证实其中四种构型团簇的基本几何结构与理想二十面体相似, 并具有同样近似于理想二十面体的高致密度、高规则度和高五次对称性, 因此可称之为二十面体类团簇. 此类二十面体类团簇可作为金属玻璃的主要结构单元, 普遍存在于非晶结构中; 二十面体类团簇及其连接能包含几乎所有的原子, 从而形成非晶结构. 研究结果提供了一种新的团簇判定方法, 有助于从微观结构层面分析合金中的非晶形成机理.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回