搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究

刘丽双 丑修建 陈涛 孙立宁

引用本文:
Citation:

银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究

刘丽双, 丑修建, 陈涛, 孙立宁

Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond

Liu Li-Shuang, Chou Xiu-Jian, Chen Tao, Sun Li-Ning
PDF
导出引用
  • 纳米金刚石因其优异的光学特性成为当今纳米科学研究中的一个热点.利用等离激元效应提高nitrogen-vacancy(NV)色心的荧光和拉曼散射强度,进而可以提高这类传感器的灵敏度.本文主要将纳米金刚石与Ag纳米颗粒结合,利用金属纳米颗粒表面的等离子体共振效应,使NV色心的荧光和拉曼强度得到增强.同时研究了Ag纳米颗粒的质量浓度对拉曼与荧光光谱强度的影响,并进一步研究了相应的荧光辐射跃迁速率与量子效率,对荧光的增强机制进行了探究.
    The nano-diamond has been a hot topic in the field of nano-science and nanotechnology for its optical properties. Much effort has been devoted to improving the fluorescence and Raman scattering intensity of nitrogen-vacancy (NV) center in nano-diamond by using plasmon resonance effect in sensing area. A combination of Ag nanoparticle and diamond can not only take advantage of the stability and biocompatibility of diamond, but also enhance the local electric field around NV center through the Ag nanoparticles, thereby speeding up the radiation of the fluorescent near the surface of the substrate, improving the strength and stability of the fluorescence, and greatly broadening the application areas of Raman spectroscopy. In this paper, we mix the nano-diamonds with Ag nanoparticles to improve the fluorescence and Raman scattering intensity on the basis of the localized surface plasmon resonance effect. The influences of Ag mass concentration on the Raman spectrum and fluorescence intensity are investigated. The results show that when the concentration of nano-Ag nanoparticles reaches up to 5 wt%, the light intensity becomes saturated, but the concentration further increases up to a value more than 7 wt% the light intensity begins to decline. Then the corresponding radiative transition rate and the fluorescence quantum efficiency are investigated, and based on these researches, influences and mechanism of surface plasmon resonance (SPR) enhancement are discussed thoroughly. We deduced that the fluorescence enhancement is mainly due to the enhanced surface plasmon field caused by transfer of surface plasmon resonance energy and the energy transfer between surface plasmon and excited state of NV centers. When the concentration of Ag nanoparticles reaches an appropriate value, a suitable distance between metal nanoparticles and diamond is obtained, thereby ensuring the strong local electric field forming on the metal surface, accelerating the emitting photons of diamond in the excited state, and also suppressing the transfer of non-radiative energy, eventually leading to the increase of diamond fluorescence emission intensity.
      通信作者: 丑修建, chouxiujian@163.com
    • 基金项目: 中国博士后科学基金(批准号:11174237,10974161)和江苏省博士后科研资助计划项目(批准号:1201038C)资助的课题.
      Corresponding author: Chou Xiu-Jian, chouxiujian@163.com
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant Nos. 11174237, 10974161), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1201038C).
    [1]

    Perevedentseva E, Karmenyan A, Chung P H, Cheng C L 2005 J. Vac. Sci. Technol. B 23 1980

    [2]

    Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R, Loncčar M 2010 Nat. Nanotechnol. 5 195

    [3]

    Tanabe I, Tatsuma T 2012 Nano Lett. 12 5418

    [4]

    Schmidt J P, Cross S E, Buratto S K 2004 J. Chem. Phys. 121 10657

    [5]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806

    [6]

    Santoro G, Yu S, Schwartzkopf M, Zhang P, Koyiloth Vayalil S, Risch J F H, Rbhausen M A, Hernández M, Domingo C, Roth S V 2014 Appl. Phys. Lett. 104 243107

    [7]

    Liu F X, Cao Z S, Tang C J, Chen L, Wang Z L 2010 Acs Nano 4 2643

    [8]

    Kneipp J, Kneipp H, Kneipp K 2008 Chem. Soc. Rev. 37 1052

    [9]

    Erol M, Han Y, Stanley S K, Stafford C M, Du H, Sukhishvili S 2009 J. Am. Chem. Soc. 131 7480

    [10]

    Feng J J, Gernert U, Sezer M, Kuhlmann U, Murgida D H, David C, Richter M, Knorr A, Hildebrandt P, Weidinger I M 2009 Nano Lett. 9 298

    [11]

    Schietinger S, Barth M, Aichele T, Benson O 2009 Nano Lett. 9 1694

    [12]

    Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Phys. 5 470

    [13]

    Damm S, Lordan F, Murphy A, McMillen M, Pollard R, Rice J H 2014 Plasmonics 9 1371

    [14]

    Lordan F, Damm S, Kennedy E, Mallon C, Forster R J, Keyes T E, Rice J H 2013 Plasmonics 8 1567

    [15]

    Song J, Cheng S, Li H, Guo H, Xu S, Xu W 2014 Mater. Lett. 135 214

    [16]

    Lin T, Yu G, Wee A, Shen Z, Loh K P 2000 Appl. Phys. Lett. 77 2692

    [17]

    Le Ru E, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [18]

    Tang J, Guo H, Chen M, Yang J, Tsoukalas D, Zhang B, Liu J, Xue C, Zhang W 2015 Sensor. Actuat. B: Chem. 218 145

    [19]

    Pons T, Medintz I L, Sapsford K E, Higashiya S, Grimes A F, English D S, Mattoussi H 2007 Nano Lett. 7 3157

    [20]

    Shi Y, Guo H, Yang J, Zhao M, Liu J, Xue C, Tang J 2015 Materials 8 3806

    [21]

    Cherukulappurath S, Johnson T W, Lindquist N C, Oh S H 2013 Nano Lett. 13 5635

    [22]

    Liu F, Tang C, Zhan P, Chen Z, Ma H, Wang Z 2014 Sci. Rep. 4 4494

    [23]

    Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627

    [24]

    Kruszewski S, Wybranowski T, Cyrankiewicz M, Ziomkowska B, Pawlaczyk A 2008 Acta Phys. Pol. A 113 1599

    [25]

    Lakowicz J R 2001 Anal. Biochem. 298 1

    [26]

    Ito Y, Matsuda K, Kanemitsu Y 2007 Phys. Rev. B 75 033309

  • [1]

    Perevedentseva E, Karmenyan A, Chung P H, Cheng C L 2005 J. Vac. Sci. Technol. B 23 1980

    [2]

    Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R, Loncčar M 2010 Nat. Nanotechnol. 5 195

    [3]

    Tanabe I, Tatsuma T 2012 Nano Lett. 12 5418

    [4]

    Schmidt J P, Cross S E, Buratto S K 2004 J. Chem. Phys. 121 10657

    [5]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806

    [6]

    Santoro G, Yu S, Schwartzkopf M, Zhang P, Koyiloth Vayalil S, Risch J F H, Rbhausen M A, Hernández M, Domingo C, Roth S V 2014 Appl. Phys. Lett. 104 243107

    [7]

    Liu F X, Cao Z S, Tang C J, Chen L, Wang Z L 2010 Acs Nano 4 2643

    [8]

    Kneipp J, Kneipp H, Kneipp K 2008 Chem. Soc. Rev. 37 1052

    [9]

    Erol M, Han Y, Stanley S K, Stafford C M, Du H, Sukhishvili S 2009 J. Am. Chem. Soc. 131 7480

    [10]

    Feng J J, Gernert U, Sezer M, Kuhlmann U, Murgida D H, David C, Richter M, Knorr A, Hildebrandt P, Weidinger I M 2009 Nano Lett. 9 298

    [11]

    Schietinger S, Barth M, Aichele T, Benson O 2009 Nano Lett. 9 1694

    [12]

    Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Phys. 5 470

    [13]

    Damm S, Lordan F, Murphy A, McMillen M, Pollard R, Rice J H 2014 Plasmonics 9 1371

    [14]

    Lordan F, Damm S, Kennedy E, Mallon C, Forster R J, Keyes T E, Rice J H 2013 Plasmonics 8 1567

    [15]

    Song J, Cheng S, Li H, Guo H, Xu S, Xu W 2014 Mater. Lett. 135 214

    [16]

    Lin T, Yu G, Wee A, Shen Z, Loh K P 2000 Appl. Phys. Lett. 77 2692

    [17]

    Le Ru E, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [18]

    Tang J, Guo H, Chen M, Yang J, Tsoukalas D, Zhang B, Liu J, Xue C, Zhang W 2015 Sensor. Actuat. B: Chem. 218 145

    [19]

    Pons T, Medintz I L, Sapsford K E, Higashiya S, Grimes A F, English D S, Mattoussi H 2007 Nano Lett. 7 3157

    [20]

    Shi Y, Guo H, Yang J, Zhao M, Liu J, Xue C, Tang J 2015 Materials 8 3806

    [21]

    Cherukulappurath S, Johnson T W, Lindquist N C, Oh S H 2013 Nano Lett. 13 5635

    [22]

    Liu F, Tang C, Zhan P, Chen Z, Ma H, Wang Z 2014 Sci. Rep. 4 4494

    [23]

    Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627

    [24]

    Kruszewski S, Wybranowski T, Cyrankiewicz M, Ziomkowska B, Pawlaczyk A 2008 Acta Phys. Pol. A 113 1599

    [25]

    Lakowicz J R 2001 Anal. Biochem. 298 1

    [26]

    Ito Y, Matsuda K, Kanemitsu Y 2007 Phys. Rev. B 75 033309

  • [1] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石. 物理学报, 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [5] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [6] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [7] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [8] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [9] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [10] 秦世荣, 赵琪, 程振国, 苏丽霞, 单崇新. 纳米金刚石的分散、修饰及载药应用研究. 物理学报, 2018, 67(16): 166801. doi: 10.7498/aps.67.20180862
    [11] 郝卫苗, 杨小宝. 硫修饰对纳米金刚石光电性能调控的理论研究. 物理学报, 2015, 64(5): 056102. doi: 10.7498/aps.64.056102
    [12] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [13] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [14] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响. 物理学报, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [15] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [16] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [17] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [18] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [19] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析. 物理学报, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [20] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
计量
  • 文章访问数:  5300
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 修回日期:  2016-07-04
  • 刊出日期:  2016-10-05

/

返回文章
返回