搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射

陆云清 成心怡 许敏 许吉 王瑾

基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射

陆云清, 成心怡, 许敏, 许吉, 王瑾
PDF
导出引用
导出核心图
  • 单纳米金属缝结构,由于其结构紧凑、易于集成、耦合效率高,常常在基于表面等离子体激元(surface plasmon polaritons,SPPs)的纳米结构器件中用于构建光源.但是,单纳米缝的低透射率一直是该结构向实际应用转化中的问题;实际上,如何有效地增强其透射率一直是研究的重点.本文提出了一种有效增强单纳米缝异常透射的方法和结构,该结构由分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝构成.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上的塔姆激元(Tamm plasmon polaritons,TPPs)和纳米缝中的SPPs能够同时被有效激发,并相互耦合形成TPPs-SPPs混合模式,当TPPs与SPPs满足波矢匹配条件时,利用TPPs的局域场增强效应可显著提高SPPs的激发效率,结合纳米缝中的类法布里-珀罗腔共振效应,最终可实现对单纳米缝异常透射率的有效增强.本文利用传输矩阵法和有限元算法分析了DBR-银纳米缝结构上单纳米缝的透射特性.经过参数优化,在银膜厚度为100 nm、纳米缝宽为11 nm时,DBR-银纳米缝结构的最大透射率为0.166,相对于TiO2银纳米缝结构(无DBR)的透射率(0.01),提高了16倍.该研究从基本物理机理出发,实现了对单纳米缝异常透射的增强,研究结果在纳米光子学、近场光学成像与探测、极化激元激光器等相关领域具有潜在的应用价值.
      通信作者: 陆云清, luyq@njupt.edu.cn;jinwang@njupt.edu.cn ; 王瑾, luyq@njupt.edu.cn;jinwang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575096)、国家自然科学基金青年科学基金(批准号:11404170)、国家教育部留学回国人员科研启动基金(批准号:105757)和江苏省基础研究计划基金(批准号:BK20131383)资助的课题.
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [3]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [4]

    Moreau A, Ciracì C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [5]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [6]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [7]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [8]

    Bethe H A 1944 Phys. Rev. 66 163

    [9]

    Bouwkamp C J 1954 Rep. Prog. Phys. 17 35

    [10]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [11]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [12]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [13]

    Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [14]

    Rahman A T, Majewski P, Vasilev K 2015 Opt. Lett. 37 1742

    [15]

    Jiao X, Wang P, Tang L, Lu Y, Li Q, Zhang D, Yao P, Ming H, Xie J 2005 Appl. Phys. B 80 301

    [16]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [17]

    Gan Q, Guo B, Song G, Chen L, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [18]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [19]

    Lopeztejeira F, Rodrigo S G, Martinmoreno L, Garciavidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [20]

    Lopeztejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, González M U, Weeber J C, Dereux A 2008 New J. Phys. 10 033035

    [21]

    Li Z B, Tian J G, Liu Z B, Zhou W Y, Zhang C P 2005 Opt. Express 13 9071

    [22]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [23]

    Cui Y X, He S L 2009 Opt. Express 17 13995

    [24]

    Sun B, Wang L L, Wang L, Zhai X, Li X F, Liu J Q 2013 Opt. Laser Technol. 54 214

    [25]

    Zhang Q, Hu P, Liu C 2015 Opt. Commun. 335 231

    [26]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [27]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [28]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [29]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [30]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [31]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese)[张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉2015物理学报64 114202]

    [32]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese)[陈颖, 范卉青, 卢波2014物理学报63 244207]

    [33]

    Lopezgarcia M, Ho Y L D, Taverne M P C, Chen L F, Murshidy M M, Edwards A P, Serry M Y, Adawi A M, Rarity J G, Oulton R 2014 Appl. Phys. Lett. 104 231116

    [34]

    Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112

    [35]

    Feigenbaum E, Orenstein M 2007 J. Lightwave Technol. 25 2547

    [36]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407

    [37]

    Vial A, Grimault A S, Macias D, Barchiesi D, Lamy D L C M 2005 Phys. Rev. B 71 085416

    [38]

    Yeh P 1988 Optical Waves in Layered Media (New York:Wiley) pp337-344

    [39]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601

  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [3]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [4]

    Moreau A, Ciracì C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [5]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [6]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [7]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [8]

    Bethe H A 1944 Phys. Rev. 66 163

    [9]

    Bouwkamp C J 1954 Rep. Prog. Phys. 17 35

    [10]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [11]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [12]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [13]

    Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [14]

    Rahman A T, Majewski P, Vasilev K 2015 Opt. Lett. 37 1742

    [15]

    Jiao X, Wang P, Tang L, Lu Y, Li Q, Zhang D, Yao P, Ming H, Xie J 2005 Appl. Phys. B 80 301

    [16]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [17]

    Gan Q, Guo B, Song G, Chen L, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [18]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [19]

    Lopeztejeira F, Rodrigo S G, Martinmoreno L, Garciavidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [20]

    Lopeztejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, González M U, Weeber J C, Dereux A 2008 New J. Phys. 10 033035

    [21]

    Li Z B, Tian J G, Liu Z B, Zhou W Y, Zhang C P 2005 Opt. Express 13 9071

    [22]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [23]

    Cui Y X, He S L 2009 Opt. Express 17 13995

    [24]

    Sun B, Wang L L, Wang L, Zhai X, Li X F, Liu J Q 2013 Opt. Laser Technol. 54 214

    [25]

    Zhang Q, Hu P, Liu C 2015 Opt. Commun. 335 231

    [26]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [27]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [28]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [29]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [30]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [31]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese)[张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉2015物理学报64 114202]

    [32]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese)[陈颖, 范卉青, 卢波2014物理学报63 244207]

    [33]

    Lopezgarcia M, Ho Y L D, Taverne M P C, Chen L F, Murshidy M M, Edwards A P, Serry M Y, Adawi A M, Rarity J G, Oulton R 2014 Appl. Phys. Lett. 104 231116

    [34]

    Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112

    [35]

    Feigenbaum E, Orenstein M 2007 J. Lightwave Technol. 25 2547

    [36]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407

    [37]

    Vial A, Grimault A S, Macias D, Barchiesi D, Lamy D L C M 2005 Phys. Rev. B 71 085416

    [38]

    Yeh P 1988 Optical Waves in Layered Media (New York:Wiley) pp337-344

    [39]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601

  • [1] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [2] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究. 物理学报, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [3] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [4] 刘明礼, 刘仁杰, 田相龙, 王亚伟, 雷海娜. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用. 物理学报, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [5] 逯志欣, 于丽, 刘炳灿. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [6] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [7] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [8] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [9] 刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜. 横电波激励下亚波长一维金属光栅的异常透射性. 物理学报, 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [10] 王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨. 亚波长孔阵列的太赫兹波异常透射研究. 物理学报, 2009, 58(10): 6884-6888. doi: 10.7498/aps.58.6884
    [11] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [12] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [13] 王平, 胡德骄, 肖钰斐, 庞霖. 金属光栅对表面等离子体波的辐射抑制研究. 物理学报, 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [14] 李志明, 王玺, 聂劲松. 飞秒激光烧蚀硅材料表面形成周期波纹形貌研究. 物理学报, 2017, 66(10): 105201. doi: 10.7498/aps.66.105201
    [15] 黄茜, 曹丽冉, 耿卫东, 孙建, 王烁, 熊绍珍, 张晓丹, 赵颖. 功能光学纳米Ag薄膜的制备及其光学特性研究. 物理学报, 2009, 58(4): 2731-2736. doi: 10.7498/aps.58.2731
    [16] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [17] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [18] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [19] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [20] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
  • 引用本文:
    Citation:
计量
  • 文章访问数:  622
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 修回日期:  2016-07-21
  • 刊出日期:  2016-10-20

基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射

    基金项目: 

    国家自然科学基金(批准号:61575096)、国家自然科学基金青年科学基金(批准号:11404170)、国家教育部留学回国人员科研启动基金(批准号:105757)和江苏省基础研究计划基金(批准号:BK20131383)资助的课题.

摘要: 单纳米金属缝结构,由于其结构紧凑、易于集成、耦合效率高,常常在基于表面等离子体激元(surface plasmon polaritons,SPPs)的纳米结构器件中用于构建光源.但是,单纳米缝的低透射率一直是该结构向实际应用转化中的问题;实际上,如何有效地增强其透射率一直是研究的重点.本文提出了一种有效增强单纳米缝异常透射的方法和结构,该结构由分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝构成.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上的塔姆激元(Tamm plasmon polaritons,TPPs)和纳米缝中的SPPs能够同时被有效激发,并相互耦合形成TPPs-SPPs混合模式,当TPPs与SPPs满足波矢匹配条件时,利用TPPs的局域场增强效应可显著提高SPPs的激发效率,结合纳米缝中的类法布里-珀罗腔共振效应,最终可实现对单纳米缝异常透射率的有效增强.本文利用传输矩阵法和有限元算法分析了DBR-银纳米缝结构上单纳米缝的透射特性.经过参数优化,在银膜厚度为100 nm、纳米缝宽为11 nm时,DBR-银纳米缝结构的最大透射率为0.166,相对于TiO2银纳米缝结构(无DBR)的透射率(0.01),提高了16倍.该研究从基本物理机理出发,实现了对单纳米缝异常透射的增强,研究结果在纳米光子学、近场光学成像与探测、极化激元激光器等相关领域具有潜在的应用价值.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回