搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁热效应材料的研究进展

郑新奇 沈俊 胡凤霞 孙继荣 沈保根

磁热效应材料的研究进展

郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根
PDF
导出引用
导出核心图
  • 磁制冷技术的发展取决于具有大磁热效应磁制冷材料的研发进展.经过长期的工作积累,特别是近20年来的努力,许多新型磁制冷材料的探索和研究极大地促进了磁制冷技术的进步.本文介绍了磁热效应的基本原理和磁制冷研究的发展历史,系统综述了低温区和室温区具有大磁热效应的磁制冷材料的研究进展,重点介绍了一些受到较为关注的磁热效应材料的最新研究成果.低温区磁制冷材料主要包括具有低温相变的二元稀土基金属间化合物(RGa,RNi,RZn,RSi,R3Co以及R12Co7)、稀土-过渡金属-主族金属三元化合物(RTSi,RTAl,RT2Si2,RCo2B2,RCo3B2)以及四元化合物RT2B2C等,其中R代表稀土元素,T代表过渡金属.这些材料一般都具有二级相变,具有良好的热、磁可逆性,也因其合金属性具有良好的导热性.室温区磁制冷材料主要包括Gd-Si-Ge,La-Fe-Si,MnAs基,Mn基Husler合金,Mn基反钙钛矿,Mn-Co-Ge,Fe-Rh以及钙钛矿氧化物等系列.这些材料一般都具有一级相变,多数在室温具有巨大的磁热效应而受到国内外的极大关注.其中,La-Fe-Si系列是国际上普遍认为具有重要应用前景的磁制冷工质之一,也是我国具有自主知识产权的材料.本文还对磁制冷材料的发展方向进行了展望.
      通信作者: 沈俊, jshen@mail.ipc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51322605,51501005,11274357,51271192,51531008,51271196)、中央高校基本科研业务费专项资金(批准号:FRF-TP-15-010A1)和中国博士后科学基金(批准号:2016M591071)资助的课题.
    [1]

    Warburg E 1881 Ann. Phys. 13 141

    [2]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p398

    [3]

    Casanova F 2003 Ph. D. Dissertation (Barcelona:University of de Barcelona)

    [4]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [5]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p400

    [6]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [7]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [8]

    Debye P 1926 Ann. Phys. 81 1154

    [9]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864

    [10]

    Giauque W F, McDougall I P D 1933 Phys. Rev. 43 768

    [11]

    Cooke A H 1949 Proc. Roy. Soc. A 62 269

    [12]

    McMichael R D, Ritter J J, Shull R D 1993 J. Appl. Phys. 73 6946

    [13]

    Levitin R Z, Snegirev V V, Kopylov A V, Lagutin A S, Gerber A 1997 J. Magn. Magn. Mater. 170 223

    [14]

    Shull R D, McMichael R D, Ritter J J 1993 Nanostructure Mater. 2 205

    [15]

    Shull R D 1993 IEEE Trans. Magn. 29 2614

    [16]

    Gschneidner Jr K A, Pecharsky V K, Gailloux M J, Takeya H 1997 Adv. Cryog. Eng. 42 465

    [17]

    Pecharsky V K, Gschneidner Jr K A, Zimm C B 1997 Adv. Cryog. Eng. 42 451

    [18]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 J. Appl. Phys. 84 5677

    [19]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 Adv. Cryog. Eng. 43 1737

    [20]

    Von Ranke P J, Pecharsky V K, Gschneidner Jr K A 1998 Phys. Rev. B 58 12110

    [21]

    Gschneidner Jr K A, Pecharsky V K, Malik S K 1997 Adv. Cryog. Eng. 42 475

    [22]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2009 Appl. Phys. Lett. 95 132504

    [23]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [24]

    Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 102 022421

    [25]

    Zheng X Q, Zhang B, Li Y Q, Wu H, Zhang H, Zhang J Y, Wang S G, Huang Q Z, Shen B G 2016 J. Alloys Compd. 680 617

    [26]

    Shen J, Zhao J L, Hu F X, Wu J F, Sun J R, Shen B G 2010 Chin. Phys. B 19 047502

    [27]

    Zheng X Q 2015 Ph. D. Dissertation (Beijing:University of Chinese Academy of Social Sciences)(in Chinese)[郑新奇2015博士学位论文(北京:中国科学院大学)]

    [28]

    Li L, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R, Zhou S 2015 Appl. Phys. Lett. 107 132401

    [29]

    Brown G V 1971 International Institute of Refrigeration

    [30]

    Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 62 3873

    [31]

    Takeya H, Pecharsky V K, Gschneidner J K A, Moorman J O 1994 Appl. Phys. Lett. 64 2739

    [32]

    Duc N H, Goto T 1999 Handbook on the Physics and Chemistry of Rare Earths (Vol.26)(Amsterdam:North-Holland) p230

    [33]

    Franse J J M, Radwanski R J 1993 Magnetic Properties of Binary Rare Earth 3rd-transition-metal Intermetallic Compounds (Vol. 7)(Amsterdam:North-Holland) p405

    [34]

    Tishin A M, Spichkin Y I 2003 Mater. Today 6 51

    [35]

    Giguere, Foldeaki M, Shcnelle W, Gmelin E 1999 J. Phys.:Condens. Matter 11 6969

    [36]

    Duc N H, Kim Anh D T, Brommer P E 2002 Physica B 319 1

    [37]

    Duc N H, Kim Anh D T 2002 J. Magn. Magn. Mater. 242-245 873

    [38]

    Gomes A M, Reis M S, Oliveira I S, Guimarãs, Takeuchi A Y 2002 J. Magn. Magn. Mater. 242-245 870

    [39]

    Cooke H, Du H J, Wolf W P 1953 Philos. Mag. 44 623

    [40]

    Herrero-Albillos J, Bartolomé F, García L M, Casanova F, Labarta A, Batlle X 2006 Phys. Rev. B 73 134410

    [41]

    Benford S M 1979 J. Appl. Phys. 50 1868

    [42]

    Tishin A M, Jr Gschneidner K A, Pecharsky V K 1999 Phys. Rev. B 59 503

    [43]

    Liu X Y, Barclay J A, Földeàki M, Gopal B R, Chahine R, Bose T K 1997 Adv. Cryog. Eng. 42A 431

    [44]

    Foldeaki M, Chahine R, Gopal B R, Bose T K, Liu X Y, Barclay J A 1998 J. Appl. Phys. 83 2727

    [45]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [46]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [47]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299

    [48]

    Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W, Bohigas X 1996 Appl. Phys. Lett. 69 3596

    [49]

    Hu F X, Shen B G, Sun J R, Zhang X X 2000 Chin. Phys. 9 550

    [50]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [51]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460

    [52]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Zhang X X 2000 J. Phys.:Condens. Matter 12 L691

    [53]

    Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Appl. Phys. Lett. 80 826

    [54]

    Hu F X, Shen B G, Sun J R 2001 Phys. Rev. B 64 012409

    [55]

    Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J, Sun J R 2002 Chin. Phys. 11 741

    [56]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [57]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853

    [58]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [59]

    Recarte V, Pérez-Landazábal J I, Gómez-Polo C, Cesari E, Dutkiewicz J 2006 Appl. Phys. Lett. 88 132503

    [60]

    Stadler S, Khan M, Mitchell J, Ali N, Gomes A M, Dubenko I, Takeuchi A Y, Guimarães A P 2006 Appl. Phys. Lett. 88 192511

    [61]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [62]

    Jr Gschneidner K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [63]

    Barclay J A, Overton Jr W C, Zimm C B 1984 Proceedings of the 17th International Conference on Low Temperature Physics 151 p157

    [64]

    Hashimoto T, Matsumoto K, Kurihara T, Numuzawa T, Tomokiyo A, Yayama H, Goto T, Todo S, Sahashi M 1986 Adv. Cryog. Eng. 32 279

    [65]

    Hashimoto T, Kurihara T, Matsumoto K, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 26 1673

    [66]

    Gschneidner Jr K A, Takeya H M, Pecharsky V K, Malik S K, Zimm C B 1994 Adv. Cryog. Eng. 39 1457

    [67]

    Zhang X X, Wang F W, Wen G H 2001 J. Phys.:Condens. Matter 13 L747

    [68]

    Tomokiyo A, Yayama H, Wakabayashi H, Kuzuhara T, Hashimoto T, Sahashi M, Inomata A 1986 Adv. Cryog. Eng. 32 295

    [69]

    Wada H, Tomekawa S, Shiga M 1999 Cryogenics 39 915

    [70]

    Wada H, Tanabe Y, Shiga M, Sugawara H, Sato H 2001 J. Alloys Compd. 316 245

    [71]

    Zhang J Y, Luo J, Li J B, Liang J K, Wang Y C, Ji L N, Liu Y H, Rao G H 2009 J. Alloys Compd. 469 15

    [72]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 157

    [73]

    Zheng X Q, Chen J, Shen J, Zhang H, Xu Z Y, Gao W W, Wu J F, Hu F X, Sun J R, Shen B G 2012 J. Appl. Phys. 111 07A917

    [74]

    Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A905

    [75]

    Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A938

    [76]

    Zheng X Q, Wu H, Chen J, Zhang B, Li Y Q, Hu F X, Sun J R, Huang Q Z, Shen B G 2015 Sci. Rep. 5 14970

    [77]

    Dong Q Y, Shen B G, Chen J, Shen J, Zhang H W, Sun J R 2009 J. Appl. Phys. 105 113902

    [78]

    Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H W, Sun J R 2009 Solid State Commun. 149 417

    [79]

    Dong Q Y, Shen B G, Chen J, Shen J, Sun J R 2011 Solid State Commun. 151 112

    [80]

    Dong Q Y, ChenJ, Shen J Sun J R, Shen B G 2012 J. Magn. Magn. Mater. 324 2676

    [81]

    Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [82]

    Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 J. Appl. Phys. 114 163915

    [83]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [84]

    Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 103 202412

    [85]

    Zhang H, Sun Y J, Yang L H, Niu E, Wang H S, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 063901

    [86]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501

    [87]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [88]

    Li L, Niehaus O, Johnscher M, Pottgen R 2015 Intermetallics 60 9

    [89]

    Li B, Du J, Ren W J, Hu W J, Zhang Q, Li D, Zhang Z D 2008 Appl. Phys. Lett. 92 242504

    [90]

    Shen J, Zhao J L, Hu F X, Rao G H, Liu G Y, Wu J F, Li Y X, Sun J R, Shen B G 2010 Appl. Phys. A 99 853

    [91]

    Shen J, Wu J F 2011 J. Appl. Phys. 109 07A931

    [92]

    Kumar P, Singh N K, Nayak A K, Haldar A, Suresh K G, Nigam A K 2010 J. Appl. Phys. 107 09A932

    [93]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Appl. Phys. 113 033908

    [94]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Alloys Compd. 572 1

    [95]

    Wang L C, Shen B G 2014 Rare Met. 33 239

    [96]

    Li L, Nishimura K 2009 Appl. Phys. Lett. 95 132505

    [97]

    Li L, Nishimura K, Kadonaga M, Qian Z, Huo D 2011 J. Appl. Phys. 110 043912

    [98]

    Zhang Y, Yang B 2014 J. Alloys Compd. 610 540

    [99]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

  • [1]

    Warburg E 1881 Ann. Phys. 13 141

    [2]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p398

    [3]

    Casanova F 2003 Ph. D. Dissertation (Barcelona:University of de Barcelona)

    [4]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [5]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p400

    [6]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [7]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [8]

    Debye P 1926 Ann. Phys. 81 1154

    [9]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864

    [10]

    Giauque W F, McDougall I P D 1933 Phys. Rev. 43 768

    [11]

    Cooke A H 1949 Proc. Roy. Soc. A 62 269

    [12]

    McMichael R D, Ritter J J, Shull R D 1993 J. Appl. Phys. 73 6946

    [13]

    Levitin R Z, Snegirev V V, Kopylov A V, Lagutin A S, Gerber A 1997 J. Magn. Magn. Mater. 170 223

    [14]

    Shull R D, McMichael R D, Ritter J J 1993 Nanostructure Mater. 2 205

    [15]

    Shull R D 1993 IEEE Trans. Magn. 29 2614

    [16]

    Gschneidner Jr K A, Pecharsky V K, Gailloux M J, Takeya H 1997 Adv. Cryog. Eng. 42 465

    [17]

    Pecharsky V K, Gschneidner Jr K A, Zimm C B 1997 Adv. Cryog. Eng. 42 451

    [18]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 J. Appl. Phys. 84 5677

    [19]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 Adv. Cryog. Eng. 43 1737

    [20]

    Von Ranke P J, Pecharsky V K, Gschneidner Jr K A 1998 Phys. Rev. B 58 12110

    [21]

    Gschneidner Jr K A, Pecharsky V K, Malik S K 1997 Adv. Cryog. Eng. 42 475

    [22]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2009 Appl. Phys. Lett. 95 132504

    [23]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [24]

    Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 102 022421

    [25]

    Zheng X Q, Zhang B, Li Y Q, Wu H, Zhang H, Zhang J Y, Wang S G, Huang Q Z, Shen B G 2016 J. Alloys Compd. 680 617

    [26]

    Shen J, Zhao J L, Hu F X, Wu J F, Sun J R, Shen B G 2010 Chin. Phys. B 19 047502

    [27]

    Zheng X Q 2015 Ph. D. Dissertation (Beijing:University of Chinese Academy of Social Sciences)(in Chinese)[郑新奇2015博士学位论文(北京:中国科学院大学)]

    [28]

    Li L, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R, Zhou S 2015 Appl. Phys. Lett. 107 132401

    [29]

    Brown G V 1971 International Institute of Refrigeration

    [30]

    Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 62 3873

    [31]

    Takeya H, Pecharsky V K, Gschneidner J K A, Moorman J O 1994 Appl. Phys. Lett. 64 2739

    [32]

    Duc N H, Goto T 1999 Handbook on the Physics and Chemistry of Rare Earths (Vol.26)(Amsterdam:North-Holland) p230

    [33]

    Franse J J M, Radwanski R J 1993 Magnetic Properties of Binary Rare Earth 3rd-transition-metal Intermetallic Compounds (Vol. 7)(Amsterdam:North-Holland) p405

    [34]

    Tishin A M, Spichkin Y I 2003 Mater. Today 6 51

    [35]

    Giguere, Foldeaki M, Shcnelle W, Gmelin E 1999 J. Phys.:Condens. Matter 11 6969

    [36]

    Duc N H, Kim Anh D T, Brommer P E 2002 Physica B 319 1

    [37]

    Duc N H, Kim Anh D T 2002 J. Magn. Magn. Mater. 242-245 873

    [38]

    Gomes A M, Reis M S, Oliveira I S, Guimarãs, Takeuchi A Y 2002 J. Magn. Magn. Mater. 242-245 870

    [39]

    Cooke H, Du H J, Wolf W P 1953 Philos. Mag. 44 623

    [40]

    Herrero-Albillos J, Bartolomé F, García L M, Casanova F, Labarta A, Batlle X 2006 Phys. Rev. B 73 134410

    [41]

    Benford S M 1979 J. Appl. Phys. 50 1868

    [42]

    Tishin A M, Jr Gschneidner K A, Pecharsky V K 1999 Phys. Rev. B 59 503

    [43]

    Liu X Y, Barclay J A, Földeàki M, Gopal B R, Chahine R, Bose T K 1997 Adv. Cryog. Eng. 42A 431

    [44]

    Foldeaki M, Chahine R, Gopal B R, Bose T K, Liu X Y, Barclay J A 1998 J. Appl. Phys. 83 2727

    [45]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [46]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [47]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299

    [48]

    Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W, Bohigas X 1996 Appl. Phys. Lett. 69 3596

    [49]

    Hu F X, Shen B G, Sun J R, Zhang X X 2000 Chin. Phys. 9 550

    [50]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [51]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460

    [52]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Zhang X X 2000 J. Phys.:Condens. Matter 12 L691

    [53]

    Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Appl. Phys. Lett. 80 826

    [54]

    Hu F X, Shen B G, Sun J R 2001 Phys. Rev. B 64 012409

    [55]

    Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J, Sun J R 2002 Chin. Phys. 11 741

    [56]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [57]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853

    [58]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [59]

    Recarte V, Pérez-Landazábal J I, Gómez-Polo C, Cesari E, Dutkiewicz J 2006 Appl. Phys. Lett. 88 132503

    [60]

    Stadler S, Khan M, Mitchell J, Ali N, Gomes A M, Dubenko I, Takeuchi A Y, Guimarães A P 2006 Appl. Phys. Lett. 88 192511

    [61]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [62]

    Jr Gschneidner K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [63]

    Barclay J A, Overton Jr W C, Zimm C B 1984 Proceedings of the 17th International Conference on Low Temperature Physics 151 p157

    [64]

    Hashimoto T, Matsumoto K, Kurihara T, Numuzawa T, Tomokiyo A, Yayama H, Goto T, Todo S, Sahashi M 1986 Adv. Cryog. Eng. 32 279

    [65]

    Hashimoto T, Kurihara T, Matsumoto K, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 26 1673

    [66]

    Gschneidner Jr K A, Takeya H M, Pecharsky V K, Malik S K, Zimm C B 1994 Adv. Cryog. Eng. 39 1457

    [67]

    Zhang X X, Wang F W, Wen G H 2001 J. Phys.:Condens. Matter 13 L747

    [68]

    Tomokiyo A, Yayama H, Wakabayashi H, Kuzuhara T, Hashimoto T, Sahashi M, Inomata A 1986 Adv. Cryog. Eng. 32 295

    [69]

    Wada H, Tomekawa S, Shiga M 1999 Cryogenics 39 915

    [70]

    Wada H, Tanabe Y, Shiga M, Sugawara H, Sato H 2001 J. Alloys Compd. 316 245

    [71]

    Zhang J Y, Luo J, Li J B, Liang J K, Wang Y C, Ji L N, Liu Y H, Rao G H 2009 J. Alloys Compd. 469 15

    [72]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 157

    [73]

    Zheng X Q, Chen J, Shen J, Zhang H, Xu Z Y, Gao W W, Wu J F, Hu F X, Sun J R, Shen B G 2012 J. Appl. Phys. 111 07A917

    [74]

    Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A905

    [75]

    Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A938

    [76]

    Zheng X Q, Wu H, Chen J, Zhang B, Li Y Q, Hu F X, Sun J R, Huang Q Z, Shen B G 2015 Sci. Rep. 5 14970

    [77]

    Dong Q Y, Shen B G, Chen J, Shen J, Zhang H W, Sun J R 2009 J. Appl. Phys. 105 113902

    [78]

    Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H W, Sun J R 2009 Solid State Commun. 149 417

    [79]

    Dong Q Y, Shen B G, Chen J, Shen J, Sun J R 2011 Solid State Commun. 151 112

    [80]

    Dong Q Y, ChenJ, Shen J Sun J R, Shen B G 2012 J. Magn. Magn. Mater. 324 2676

    [81]

    Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [82]

    Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 J. Appl. Phys. 114 163915

    [83]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [84]

    Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 103 202412

    [85]

    Zhang H, Sun Y J, Yang L H, Niu E, Wang H S, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 063901

    [86]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501

    [87]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [88]

    Li L, Niehaus O, Johnscher M, Pottgen R 2015 Intermetallics 60 9

    [89]

    Li B, Du J, Ren W J, Hu W J, Zhang Q, Li D, Zhang Z D 2008 Appl. Phys. Lett. 92 242504

    [90]

    Shen J, Zhao J L, Hu F X, Rao G H, Liu G Y, Wu J F, Li Y X, Sun J R, Shen B G 2010 Appl. Phys. A 99 853

    [91]

    Shen J, Wu J F 2011 J. Appl. Phys. 109 07A931

    [92]

    Kumar P, Singh N K, Nayak A K, Haldar A, Suresh K G, Nigam A K 2010 J. Appl. Phys. 107 09A932

    [93]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Appl. Phys. 113 033908

    [94]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Alloys Compd. 572 1

    [95]

    Wang L C, Shen B G 2014 Rare Met. 33 239

    [96]

    Li L, Nishimura K 2009 Appl. Phys. Lett. 95 132505

    [97]

    Li L, Nishimura K, Kadonaga M, Qian Z, Huo D 2011 J. Appl. Phys. 110 043912

    [98]

    Zhang Y, Yang B 2014 J. Alloys Compd. 610 540

    [99]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

  • [1] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [2] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [3] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [4] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [5] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [6] 李养贤, 沈 俊, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变. 物理学报, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [7] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变. 物理学报, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [8] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [9] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [10] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [11] 潘成福, 常虹, 钟伟, 都有为, 陈伟. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [12] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究. 物理学报, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [13] 董雪, 张国营, 夏往所, 黄逸佳, 胡风. Dy3Al5O12磁热性质研究. 物理学报, 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [14] 陈良尧, 梁冰青, 王 海, 张臻蓉, 王荫君, 周 勋. PdMn/Co多层膜的磁性和磁光特性研究. 物理学报, 2003, 52(10): 2616-2621. doi: 10.7498/aps.52.2616
    [15] 陈良尧, 梁冰青, 王 海, 唐云俊, 王荫君, 周 勋. Pt974Mn26/Co多层膜的磁性与磁光性质研究. 物理学报, 2003, 52(2): 492-497. doi: 10.7498/aps.52.492
    [16] 陈湘, 陈云贵, 唐永柏, 肖定全, 李道华. 一级相变磁制冷材料的基础问题探究. 物理学报, 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [17] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [18] 陈辉, 张国营, 杨丹, 高娇. 确定磁性体在绝热磁化过程中达到最高温度的方法. 物理学报, 2012, 61(9): 097501. doi: 10.7498/aps.61.097501
    [19] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [20] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安. 纳米晶复合Pr2Fe14B/α-Fe永磁材料磁性的研究. 物理学报, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2713
  • PDF下载量:  1165
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 修回日期:  2016-08-02
  • 刊出日期:  2016-11-05

磁热效应材料的研究进展

  • 1. 北京科技大学材料科学与工程学院, 北京 100083;
  • 2. 中国科学院理化技术研究所, 北京 100190;
  • 3. 中国科学院物理研究所, 中国科学院大学, 北京 100190
  • 通信作者: 沈俊, jshen@mail.ipc.ac.cn
    基金项目: 

    国家自然科学基金(批准号:51322605,51501005,11274357,51271192,51531008,51271196)、中央高校基本科研业务费专项资金(批准号:FRF-TP-15-010A1)和中国博士后科学基金(批准号:2016M591071)资助的课题.

摘要: 磁制冷技术的发展取决于具有大磁热效应磁制冷材料的研发进展.经过长期的工作积累,特别是近20年来的努力,许多新型磁制冷材料的探索和研究极大地促进了磁制冷技术的进步.本文介绍了磁热效应的基本原理和磁制冷研究的发展历史,系统综述了低温区和室温区具有大磁热效应的磁制冷材料的研究进展,重点介绍了一些受到较为关注的磁热效应材料的最新研究成果.低温区磁制冷材料主要包括具有低温相变的二元稀土基金属间化合物(RGa,RNi,RZn,RSi,R3Co以及R12Co7)、稀土-过渡金属-主族金属三元化合物(RTSi,RTAl,RT2Si2,RCo2B2,RCo3B2)以及四元化合物RT2B2C等,其中R代表稀土元素,T代表过渡金属.这些材料一般都具有二级相变,具有良好的热、磁可逆性,也因其合金属性具有良好的导热性.室温区磁制冷材料主要包括Gd-Si-Ge,La-Fe-Si,MnAs基,Mn基Husler合金,Mn基反钙钛矿,Mn-Co-Ge,Fe-Rh以及钙钛矿氧化物等系列.这些材料一般都具有一级相变,多数在室温具有巨大的磁热效应而受到国内外的极大关注.其中,La-Fe-Si系列是国际上普遍认为具有重要应用前景的磁制冷工质之一,也是我国具有自主知识产权的材料.本文还对磁制冷材料的发展方向进行了展望.

English Abstract

参考文献 (99)

目录

    /

    返回文章
    返回