搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱

张耘 王学维 柏红梅

第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱

张耘, 王学维, 柏红梅
PDF
导出引用
导出核心图
  • 本文利用第一性原理研究了In:Mn:LiNbO3晶体及对比组的电子结构和光学特性.研究结果显示,掺锰铌酸锂晶体的杂质能级主要由Mn的3d态轨道贡献,在禁带中处于较浅的位置,在价带顶端也有所贡献,晶体带隙较纯铌酸锂晶体变窄;Mn:LiNbO3晶体分别在1.66,2.85 eV等位置形成了吸收峰;掺In的Mn:LiNbO3晶体在1.66 eV附近的吸收明显减弱,掺铟浓度约为阈值(约3 mol%)时在1.66 eV吸收继续减弱,并出现了一些新的光吸收峰.本文提出了1.66 eV的吸收与Mn2+离子相关,因掺铟离子而出现的2.13 eV的吸收与Mn3+离子相关,这两峰随着掺铟离子的增加将出现前者减弱而后者增强的变化,该变化可以用电荷在锰、铟离子间的转移解释;还提出在铟、锰共掺铌酸锂晶体中,若光存储的记录光选择低能段(1.66 eV附近),此时对应记录灵敏度要求较小的掺铟量等观点.
      通信作者: 张耘, yzhang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274257)资助的课题.
    [1]

    Ballman A A 2006 J. Am. Ceram. Soc. 48 112

    [2]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665

    [3]

    Li M H, Zhao Y Q, Xu K B 1995 Chin. Sci. Bull. 41 655

    [4]

    Kong Y F, Xu J J, Zhang G Y 2005 Multifunctional Photovoltaic Material–Lithium Niobate Crystal (Beijing:Science Press) p263(in Chinese)[孔勇发, 许京军, 张光寅2005多功能光电材料––铌酸锂晶体(北京:科学出版社)第263页]

    [5]

    Liu D, Liu L, Liu Y, Zhou C, Xu L 2000 Appl. Phys. Lett. 77 2964

    [6]

    Yang Y P, Buse K, Psaltis D 2002 Opt. Lett. 27 158

    [7]

    Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F 2008 Acta Phys. Sin. 57 2946 (in Chinese)[付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发2008物理学报57 2946]

    [8]

    Zhen X, Li Q, Xu Y 2005 Appl. Opt. 44 4569

    [9]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013

    [10]

    Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [11]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [12]

    Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866

    [13]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015物理学报64 124210]

    [14]

    Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347

    [15]

    Zeng F, Sheng P, Tang S G, Pan F, Yan S W, Hu C F, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [16]

    Corradi G, Sothe H, Spaeth J M, Polgar K 1998 J. Phys. Condens. Matter 2 543

    [17]

    Kong Y F, Wen J, Wang H N 1995 Appl. Phys. Lett. 66 280

    [18]

    Lerner P, Legras C, Dumas J P 1968 J. Cryst. Growth 3 231

    [19]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401

    [20]

    White R T, Mckinnie I T, Butterworth S D, Baxter G W, Warrington D M, Smith P G R 2003 Appl. Phys. B 77 547

    [21]

    Mamoun S, Merad A E, Guilbert L 2013 J. Comput. Mater. Sci. 79 125

    [22]

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Vol. 2)(Beijing:Science Press) p76(in Chinese)[沈学础2002半导体光谱和光学性质(第二版) (北京:科学出版社)第76页]

    [23]

    Liu Y, Kitamura K, Takekawa S 2002 Appl. Phys. Lett. 81 2686

    [24]

    Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94

    [25]

    Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 149

    [26]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089

    [27]

    Lei X W, Lin Z, Zhao H 2011 J. Atomic and Molecular Phys. 28 944 (in Chinese)[雷晓蔚, 林竹, 赵辉2011原子与分子物理学报28 944]

    [28]

    Liu D, Liu L, Zhou C, Zhang J, Xu L 2002 Microwave Opt. Technol. Lett. 32 423

    [29]

    Zhang G, Tomita Y, Zhang X, Sunarno S 2002 Appl. Phys. Lett. 81 1393

  • [1]

    Ballman A A 2006 J. Am. Ceram. Soc. 48 112

    [2]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665

    [3]

    Li M H, Zhao Y Q, Xu K B 1995 Chin. Sci. Bull. 41 655

    [4]

    Kong Y F, Xu J J, Zhang G Y 2005 Multifunctional Photovoltaic Material–Lithium Niobate Crystal (Beijing:Science Press) p263(in Chinese)[孔勇发, 许京军, 张光寅2005多功能光电材料––铌酸锂晶体(北京:科学出版社)第263页]

    [5]

    Liu D, Liu L, Liu Y, Zhou C, Xu L 2000 Appl. Phys. Lett. 77 2964

    [6]

    Yang Y P, Buse K, Psaltis D 2002 Opt. Lett. 27 158

    [7]

    Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F 2008 Acta Phys. Sin. 57 2946 (in Chinese)[付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发2008物理学报57 2946]

    [8]

    Zhen X, Li Q, Xu Y 2005 Appl. Opt. 44 4569

    [9]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013

    [10]

    Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [11]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [12]

    Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866

    [13]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015物理学报64 124210]

    [14]

    Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347

    [15]

    Zeng F, Sheng P, Tang S G, Pan F, Yan S W, Hu C F, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [16]

    Corradi G, Sothe H, Spaeth J M, Polgar K 1998 J. Phys. Condens. Matter 2 543

    [17]

    Kong Y F, Wen J, Wang H N 1995 Appl. Phys. Lett. 66 280

    [18]

    Lerner P, Legras C, Dumas J P 1968 J. Cryst. Growth 3 231

    [19]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401

    [20]

    White R T, Mckinnie I T, Butterworth S D, Baxter G W, Warrington D M, Smith P G R 2003 Appl. Phys. B 77 547

    [21]

    Mamoun S, Merad A E, Guilbert L 2013 J. Comput. Mater. Sci. 79 125

    [22]

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Vol. 2)(Beijing:Science Press) p76(in Chinese)[沈学础2002半导体光谱和光学性质(第二版) (北京:科学出版社)第76页]

    [23]

    Liu Y, Kitamura K, Takekawa S 2002 Appl. Phys. Lett. 81 2686

    [24]

    Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94

    [25]

    Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 149

    [26]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089

    [27]

    Lei X W, Lin Z, Zhao H 2011 J. Atomic and Molecular Phys. 28 944 (in Chinese)[雷晓蔚, 林竹, 赵辉2011原子与分子物理学报28 944]

    [28]

    Liu D, Liu L, Zhou C, Zhang J, Xu L 2002 Microwave Opt. Technol. Lett. 32 423

    [29]

    Zhang G, Tomita Y, Zhang X, Sunarno S 2002 Appl. Phys. Lett. 81 1393

  • [1] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [2] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [3] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [4] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [5] 吴圣钰, 张耘, 柏红梅, 梁金玲. Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究. 物理学报, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [6] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究. 物理学报, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [7] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究. 物理学报, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [8] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [9] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [10] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [11] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究. 物理学报, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [12] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响. 物理学报, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [13] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [14] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [15] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [16] 郭 进, 黎光旭, 黄 丹, 邵元智, 陈弟虎. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [17] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [19] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [20] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
  • 引用本文:
    Citation:
计量
  • 文章访问数:  601
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-01-20

第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱

  • 1. 西南大学物理科学与技术学院, 重庆 400715
  • 通信作者: 张耘, yzhang@swu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11274257)资助的课题.

摘要: 本文利用第一性原理研究了In:Mn:LiNbO3晶体及对比组的电子结构和光学特性.研究结果显示,掺锰铌酸锂晶体的杂质能级主要由Mn的3d态轨道贡献,在禁带中处于较浅的位置,在价带顶端也有所贡献,晶体带隙较纯铌酸锂晶体变窄;Mn:LiNbO3晶体分别在1.66,2.85 eV等位置形成了吸收峰;掺In的Mn:LiNbO3晶体在1.66 eV附近的吸收明显减弱,掺铟浓度约为阈值(约3 mol%)时在1.66 eV吸收继续减弱,并出现了一些新的光吸收峰.本文提出了1.66 eV的吸收与Mn2+离子相关,因掺铟离子而出现的2.13 eV的吸收与Mn3+离子相关,这两峰随着掺铟离子的增加将出现前者减弱而后者增强的变化,该变化可以用电荷在锰、铟离子间的转移解释;还提出在铟、锰共掺铌酸锂晶体中,若光存储的记录光选择低能段(1.66 eV附近),此时对应记录灵敏度要求较小的掺铟量等观点.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回