搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体中高能电子各向异性压强的粒子模拟

王宬朕 董全力 刘苹 吴奕莹 盛政明 张杰

激光等离子体中高能电子各向异性压强的粒子模拟

王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰
PDF
导出引用
导出核心图
  • 直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束“点火”及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.
      通信作者: 董全力, qldong@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11674146,11274152)资助的课题.
    [1]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933

    [3]

    Drake R P 2006 High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (1st Ed.) (Berlin: Springer Science & Business Media) pp392-419

    [4]

    McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P, Sangster T C, Seka W, Short R W, Skupsky S, Smalyuk V A, Soures J M, Stoeckl C, Yaakobi B, Shvarts D, Frenje J A, Li C K, Petrasso R D, Séguin F H 2008 Phys. Plasmas 15 055503

    [5]

    Rosen M D 1999 Phys. Plasmas 6 1690

    [6]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D 1998 Phys. Plasmas 5 1901

    [7]

    Sharp D H 1984 Physica D 12 3IN111

    [8]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [9]

    Wesson J, Campbell D J 2011 Tokamaks (4th Ed.) (Oxford: Oxford University Press) pp356-358

    [10]

    Li C K, Séguin F H, Frenje J A, Petrasso R D, Delettrez JA, McKenty P W, Sangster T C, Keck R L, Soures J M, Marshall F J, Meyerhofer D D, Goncharov V N, Knauer J P, Radha P B, Regan S P, Seka W 2004 Phys. Rev. Lett. 92 205001

    [11]

    Shigemori K, Azechi H, Nakai M, Honda M, Meguro K, Miyanaga N, Takabe H, Mima K 1997 Phys. Rev. Lett. 78 250

    [12]

    Honda M, Mima K, Shigemori K, Nakai M, Azechi H, Nishiguchi A 1999 Fusion Eng. Des. 44 205

    [13]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32

    [14]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [15]

    Gu J F, Dai Z S, Fan Z F, Zou S Y, Ye W H, Pei W B, Zhu S P 2014 Phys. Plasmas 21 012704

    [16]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626

    [17]

    Wu F J, Zhou W M, Shan L Q, Li F, Liu D X, Zhang Z M, Li B Y, Bi B, Wu B, Wang W W, Zhang F, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 94101 (in Chinese) [吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉 2014 物理学报 63 94101]

    [18]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [19]

    Gu Y Q, Cai D F, Zheng Z J, Yang X D, Zhou W M, Jiao C Y, Chen H, Wen T S, Chunyu S T 2005 Acta Phys. Sin. 54 186 (in Chinese) [谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈豪, 温天舒, 淳于书泰 2005 物理学报 54 186]

    [20]

    Wu S Z, Zhang H, Zhou C T, Wu J F, Cai H B, Cao L H, He M Q, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 77 (in Chinese) [吴思忠, 张华, 周沧涛, 吴俊峰, 蔡洪波, 曹莉华, 何民卿, 朱少平, 贺贤土 2015 强激光与粒子束 27 77]

    [21]

    Cai H B, Zhou C T, Jia Q, Wu S Z, He M Q, Cao L H, Chen M, Zhang H, Liu J, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 27032001 (in Chinese) [蔡洪波, 周沧涛, 贾青, 吴思忠, 何民卿, 曹莉华, 陈默, 张华, 刘杰, 朱少平, 贺贤土 2015 强激光与粒子束 27 27032001]

    [22]

    Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物理 28 142]

    [23]

    Cassak P A, Baylor R N, Fermo R L, Beidler M T, Shay M A, Swisdak M, Drake J F, Karimabadi H 2015 Phys. Plasmas 22 020705

    [24]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001

    [25]

    Divin A, Markidis S, Lapenta G, Semenov V S, Erkaev N V, Biernat H K 2010 Phys. Plasmas 17 122102

    [26]

    Hoshino M 2005 J. Geophys. Res. 110 A10215

    [27]

    Liu C, Fox W, Bhattacharjee A 2015 Phys. Plasmas 22 053302

    [28]

    Wan W G, Lapenta G 2008 Phys. Rev. Lett. 101 015001

    [29]

    Yin L, Winske D, Gary S P, Birn J 2001 J. Geophys. Res. 106 10761

    [30]

    Wang L, Hakim A H, Bhattacharjee A, Germaschewski K 2015 Phys. Plasmas 22 012108

    [31]

    Mottez F 2004 Ann. Geophys. 22 3033

    [32]

    Heinz H, Paul W, Binder K 2005 Phys. Rev. E 72 066704

    [33]

    Cai H S, Li D 2009 Phys. Plasmas 16 052107

    [34]

    Le A, Daughton W, Karimabadi H, Egedal J 2016 Phys. Plasmas 23 032114

    [35]

    Yin L, Winske D 2003 Phys. Plasmas 10 1595

  • [1]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933

    [3]

    Drake R P 2006 High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (1st Ed.) (Berlin: Springer Science & Business Media) pp392-419

    [4]

    McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P, Sangster T C, Seka W, Short R W, Skupsky S, Smalyuk V A, Soures J M, Stoeckl C, Yaakobi B, Shvarts D, Frenje J A, Li C K, Petrasso R D, Séguin F H 2008 Phys. Plasmas 15 055503

    [5]

    Rosen M D 1999 Phys. Plasmas 6 1690

    [6]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D 1998 Phys. Plasmas 5 1901

    [7]

    Sharp D H 1984 Physica D 12 3IN111

    [8]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [9]

    Wesson J, Campbell D J 2011 Tokamaks (4th Ed.) (Oxford: Oxford University Press) pp356-358

    [10]

    Li C K, Séguin F H, Frenje J A, Petrasso R D, Delettrez JA, McKenty P W, Sangster T C, Keck R L, Soures J M, Marshall F J, Meyerhofer D D, Goncharov V N, Knauer J P, Radha P B, Regan S P, Seka W 2004 Phys. Rev. Lett. 92 205001

    [11]

    Shigemori K, Azechi H, Nakai M, Honda M, Meguro K, Miyanaga N, Takabe H, Mima K 1997 Phys. Rev. Lett. 78 250

    [12]

    Honda M, Mima K, Shigemori K, Nakai M, Azechi H, Nishiguchi A 1999 Fusion Eng. Des. 44 205

    [13]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32

    [14]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [15]

    Gu J F, Dai Z S, Fan Z F, Zou S Y, Ye W H, Pei W B, Zhu S P 2014 Phys. Plasmas 21 012704

    [16]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626

    [17]

    Wu F J, Zhou W M, Shan L Q, Li F, Liu D X, Zhang Z M, Li B Y, Bi B, Wu B, Wang W W, Zhang F, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 94101 (in Chinese) [吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉 2014 物理学报 63 94101]

    [18]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [19]

    Gu Y Q, Cai D F, Zheng Z J, Yang X D, Zhou W M, Jiao C Y, Chen H, Wen T S, Chunyu S T 2005 Acta Phys. Sin. 54 186 (in Chinese) [谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈豪, 温天舒, 淳于书泰 2005 物理学报 54 186]

    [20]

    Wu S Z, Zhang H, Zhou C T, Wu J F, Cai H B, Cao L H, He M Q, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 77 (in Chinese) [吴思忠, 张华, 周沧涛, 吴俊峰, 蔡洪波, 曹莉华, 何民卿, 朱少平, 贺贤土 2015 强激光与粒子束 27 77]

    [21]

    Cai H B, Zhou C T, Jia Q, Wu S Z, He M Q, Cao L H, Chen M, Zhang H, Liu J, Zhu S P, He X T 2015 High Power Laser and Particle Beams 27 27032001 (in Chinese) [蔡洪波, 周沧涛, 贾青, 吴思忠, 何民卿, 曹莉华, 陈默, 张华, 刘杰, 朱少平, 贺贤土 2015 强激光与粒子束 27 27032001]

    [22]

    Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物理 28 142]

    [23]

    Cassak P A, Baylor R N, Fermo R L, Beidler M T, Shay M A, Swisdak M, Drake J F, Karimabadi H 2015 Phys. Plasmas 22 020705

    [24]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001

    [25]

    Divin A, Markidis S, Lapenta G, Semenov V S, Erkaev N V, Biernat H K 2010 Phys. Plasmas 17 122102

    [26]

    Hoshino M 2005 J. Geophys. Res. 110 A10215

    [27]

    Liu C, Fox W, Bhattacharjee A 2015 Phys. Plasmas 22 053302

    [28]

    Wan W G, Lapenta G 2008 Phys. Rev. Lett. 101 015001

    [29]

    Yin L, Winske D, Gary S P, Birn J 2001 J. Geophys. Res. 106 10761

    [30]

    Wang L, Hakim A H, Bhattacharjee A, Germaschewski K 2015 Phys. Plasmas 22 012108

    [31]

    Mottez F 2004 Ann. Geophys. 22 3033

    [32]

    Heinz H, Paul W, Binder K 2005 Phys. Rev. E 72 066704

    [33]

    Cai H S, Li D 2009 Phys. Plasmas 16 052107

    [34]

    Le A, Daughton W, Karimabadi H, Egedal J 2016 Phys. Plasmas 23 032114

    [35]

    Yin L, Winske D 2003 Phys. Plasmas 10 1595

  • [1] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [2] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [3] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [4] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [5] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [6] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [7] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  252
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-04-23
  • 刊出日期:  2017-06-05

激光等离子体中高能电子各向异性压强的粒子模拟

  • 1. 鲁东大学物理与光电工程学院, 烟台 264000;
  • 2. 上海交通大学物理与天文学院, 上海 200240;
  • 3. 上海交通大学IFSA协同创新中心, 上海 200240
  • 通信作者: 董全力, qldong@aphy.iphy.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11674146,11274152)资助的课题.

摘要: 直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束“点火”及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回