搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究

杨芝 张悦 周倩倩 王玉华

Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究

杨芝, 张悦, 周倩倩, 王玉华
PDF
导出引用
  • 磁性薄膜磁学特性电场调控的相关研究对开发新型低功耗磁信息器件具有突出意义.本文基于电场调控磁性的基本理论,以OOMMF (Object Oriented Micro-Magnetic Frame)微磁学仿真软件为工具,研究了电场对生长于PZN-PT单晶衬底上Fe3O4单晶薄膜磁学特性的调控.研究结果显示:无外加电场时,薄膜表现出典型的软磁特性;沿衬底[001]方向施加的外加电场可以使得薄膜矫顽力、矩形比等磁学特性发生显著改变:当外加磁场沿[100]([010])时,施加正值(负值)电场强度可以显著增大薄膜的矫顽力与矩形比,当电场强度不小于0.6 MV/m时薄膜矩形比达到1.这是因为外加电场导致薄膜产生单轴应力各向异性,使得薄膜的等效磁各向异性发生了从无外电场下的面内四重磁晶各向异性向高电场下的近似单轴磁各向异性的过渡.外加1 MV/m与-1 MV/m的电场时等效易磁化轴分别沿[100]与[010]方向.另外,外加1 MV/m (-1 MV/m)的电场强度可以使得铁磁共振的频率增大(减小)接近1 GHz.
      通信作者: 王玉华, wangyuhua@wust.edu.cn
    • 基金项目: 武汉科技大学城市学院博士基金(批准号:2014CYBSKY003)和国家自然科学基金(批准号:11574096)资助的课题.
    [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [2] 李蕾, 张程宾. 电场对协流式微流控装置中乳液液滴生成行为的调控机理. 物理学报, 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [3] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [4] 刘锦宏, 李发伸, 田庚方, 李济晨, 张凌飞. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [5] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安. 纳米晶复合Pr2Fe14B/α-Fe永磁材料磁性的研究. 物理学报, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [6] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [7] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [8] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [9] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [10] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
    [11] 王少霞, 张丽丽. 过渡金属(Cr、Mn、Fe、Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, (): 007100. doi: 10.7498/aps.69.20200644
    [12] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [13] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究. 物理学报, 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [14] 罗鸿志, 李养贤, 唐宁, 杨伏明, 吴光恒, 郭鸿涌, 刘宝丹. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响. 物理学报, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [15] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究. 物理学报, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [16] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究. 物理学报, 2014, 63(23): 237501. doi: 10.7498/aps.63.237501
    [17] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [18] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 物理学报, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [19] Li L. H., 王 懿, 涂清云, 符秀丽, 李培刚, 陈雷明, 唐为华, 张海英. 大规模制备Ni80Fe20纳米线阵列及其磁学特性研究. 物理学报, 2005, 54(4): 1693-1696. doi: 10.7498/aps.54.1693
    [20] 李明星, 伏广才, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
  • 引用本文:
    Citation:
计量
  • 文章访问数:  813
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-07-05

Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究

  • 1. 武汉科技大学城市学院, 武汉 430083;
  • 2. 华中科技大学光学与电子信息学院, 武汉 430074;
  • 3. 武汉科技大学, 冶金工业过程系统科学湖北省重点实验室, 武汉 430081
  • 通信作者: 王玉华, wangyuhua@wust.edu.cn
    基金项目: 

    武汉科技大学城市学院博士基金(批准号:2014CYBSKY003)和国家自然科学基金(批准号:11574096)资助的课题.

摘要: 磁性薄膜磁学特性电场调控的相关研究对开发新型低功耗磁信息器件具有突出意义.本文基于电场调控磁性的基本理论,以OOMMF (Object Oriented Micro-Magnetic Frame)微磁学仿真软件为工具,研究了电场对生长于PZN-PT单晶衬底上Fe3O4单晶薄膜磁学特性的调控.研究结果显示:无外加电场时,薄膜表现出典型的软磁特性;沿衬底[001]方向施加的外加电场可以使得薄膜矫顽力、矩形比等磁学特性发生显著改变:当外加磁场沿[100]([010])时,施加正值(负值)电场强度可以显著增大薄膜的矫顽力与矩形比,当电场强度不小于0.6 MV/m时薄膜矩形比达到1.这是因为外加电场导致薄膜产生单轴应力各向异性,使得薄膜的等效磁各向异性发生了从无外电场下的面内四重磁晶各向异性向高电场下的近似单轴磁各向异性的过渡.外加1 MV/m与-1 MV/m的电场时等效易磁化轴分别沿[100]与[010]方向.另外,外加1 MV/m (-1 MV/m)的电场强度可以使得铁磁共振的频率增大(减小)接近1 GHz.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回