搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熵在非晶材料合成中的作用

李蕊轩 张勇

熵在非晶材料合成中的作用

李蕊轩, 张勇
PDF
导出引用
导出核心图
  • 熵作为系统的状态函数,对于真实物质体系而言是一个极为重要的物理量.在非晶态合金的制备过程中最具代表性的指导原则有“混乱原理”和井上三原则,二者皆与熵有着紧密的联系.在过去很长一段时间内,这些经验准则指导了大量新型非晶体系的发现,但近些年的实验结果对这些理论提出了质疑.除组元数目之外,还有其他尚待研究的因素也影响着合金体系的玻璃形成能力.本文总结了玻璃转变过程中熵在热力学条件、动力学条件和结构条件中所扮演的角色,阐述了其对玻璃形成能力产生的或正或反的影响.特别是对近几年发展起来的高熵非晶体系的研究有助于开发出临界尺寸更大的非晶合金,也有助于进一步探索多组元合金和非晶形成能力之间的关系.
      通信作者: 张勇, drzhangy@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51471025,51671020)资助的课题.
    [1]

    Kramer J 1934 Annln. Phys. 19 37

    [2]

    Johnson W L 1986 Prog. Mater. Sci. 30 81

    [3]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [4]

    Chen H S 1974 Acta Metall. 22 1505

    [5]

    Inoue A, Kato A, Zhang T, Kim S G, Masumoto T 1991 Mater. Trans. JIM 32 609

    [6]

    Inoue A, Kita K, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 722

    [7]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 177

    [8]

    Jiao W, Zhao K, Xi X K, Zhao D Q, Pan M X, Wang W H 2010 J. Non-Cryst. Solids 356 1867

    [9]

    Li H F, Zhao K, Wang Y B, Zheng Y F, Wang W H 2012 J. Biomed. Mater. Res. B: Appl. Biomater. 100 368

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [12]

    Inoue A, Nakamura T, Nishiyama N, Masumoto T 1992 Mater. Trans. JIM 33 937

    [13]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [14]

    Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T 1993 Mater. Trans. JIM 34 1234

    [15]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213

    [16]

    Takeuchi A, Inoue A 2000 Mater. Trans. JIM 41 1372

    [17]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810

    [18]

    Samaei A T, Mohammadi E 2015 Mater. Res. Express 2 096501

    [19]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299

    [20]

    Zhao K, Xia X X, Bai H Y, Zhao D Q, Wang W H 2011 Appl. Phys. Lett. 98 141913

    [21]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546

    [22]

    Li H F, Xie X H, Zhao K, Wang Y B, Zheng Y F, Wang W H, Qin L 2013 Acta Biomater. 9 8561

    [23]

    Li Y, Zhang W, Qi T 2017 J. Alloy. Compd. 693 25

    [24]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 181 223

    [25]

    Ding H Y, Yao K F 2013 J. Non-Cryst Solids 364 9

    [26]

    Ding H Y, Shao Y, Gong P, Li J F, Yao K F 2014 Mater. Lett. 125 151

    [27]

    Gao X Q, Zhao K, Ke H B, Ding D W, Wang W H, Bai H Y 2011 J. Non-Cryst. Solids 357 3557

    [28]

    Huo J, Huo L, Men H, Wang X, Inoue A, Wang J, Chang C, Li R W 2015 Intermetallics 58 31

    [29]

    Zhao S F, Yang G N, Ding H Y, Yao K F 2015 Intermetallics 61 47

    [30]

    Qi T, Li Y, Takeuchi A, Xie G, Miao H, Zhang W 2015 Intermetallics 66 8

    [31]

    Zhao S F, Shao Y, Liu X, Chen N, Ding H Y, Yao K F 2015 Mater. Design 87 625

    [32]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 185 456

    [33]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [34]

    Guo S, Hu Q, Ng C, Liu C T 2013 Intermetallics 41 96

  • [1]

    Kramer J 1934 Annln. Phys. 19 37

    [2]

    Johnson W L 1986 Prog. Mater. Sci. 30 81

    [3]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [4]

    Chen H S 1974 Acta Metall. 22 1505

    [5]

    Inoue A, Kato A, Zhang T, Kim S G, Masumoto T 1991 Mater. Trans. JIM 32 609

    [6]

    Inoue A, Kita K, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 722

    [7]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 177

    [8]

    Jiao W, Zhao K, Xi X K, Zhao D Q, Pan M X, Wang W H 2010 J. Non-Cryst. Solids 356 1867

    [9]

    Li H F, Zhao K, Wang Y B, Zheng Y F, Wang W H 2012 J. Biomed. Mater. Res. B: Appl. Biomater. 100 368

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [12]

    Inoue A, Nakamura T, Nishiyama N, Masumoto T 1992 Mater. Trans. JIM 33 937

    [13]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [14]

    Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T 1993 Mater. Trans. JIM 34 1234

    [15]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213

    [16]

    Takeuchi A, Inoue A 2000 Mater. Trans. JIM 41 1372

    [17]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810

    [18]

    Samaei A T, Mohammadi E 2015 Mater. Res. Express 2 096501

    [19]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299

    [20]

    Zhao K, Xia X X, Bai H Y, Zhao D Q, Wang W H 2011 Appl. Phys. Lett. 98 141913

    [21]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546

    [22]

    Li H F, Xie X H, Zhao K, Wang Y B, Zheng Y F, Wang W H, Qin L 2013 Acta Biomater. 9 8561

    [23]

    Li Y, Zhang W, Qi T 2017 J. Alloy. Compd. 693 25

    [24]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 181 223

    [25]

    Ding H Y, Yao K F 2013 J. Non-Cryst Solids 364 9

    [26]

    Ding H Y, Shao Y, Gong P, Li J F, Yao K F 2014 Mater. Lett. 125 151

    [27]

    Gao X Q, Zhao K, Ke H B, Ding D W, Wang W H, Bai H Y 2011 J. Non-Cryst. Solids 357 3557

    [28]

    Huo J, Huo L, Men H, Wang X, Inoue A, Wang J, Chang C, Li R W 2015 Intermetallics 58 31

    [29]

    Zhao S F, Yang G N, Ding H Y, Yao K F 2015 Intermetallics 61 47

    [30]

    Qi T, Li Y, Takeuchi A, Xie G, Miao H, Zhang W 2015 Intermetallics 66 8

    [31]

    Zhao S F, Shao Y, Liu X, Chen N, Ding H Y, Yao K F 2015 Mater. Design 87 625

    [32]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 185 456

    [33]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [34]

    Guo S, Hu Q, Ng C, Liu C T 2013 Intermetallics 41 96

  • [1] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [2] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [3] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化. 物理学报, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [4] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [5] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [6] 史旺林, 宋太平, 侯晨霞. Vaidya-Bonner黑洞的熵. 物理学报, 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [7] 赵峥, 张靖仪. 直线加速动态黑洞Dirac场的熵. 物理学报, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [8] 强丽娥, 高新芹, 赵 峥. 动态黑洞温度和熵的再讨论. 物理学报, 2004, 53(10): 3619-3626. doi: 10.7498/aps.53.3619
    [9] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [10] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵. 物理学报, 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [11] 郑元强. 球对称动态黑洞Dirac场的熵的再讨论. 物理学报, 2007, 56(3): 1266-1270. doi: 10.7498/aps.56.1266
    [12] 宋太平, 侯晨霞, 黄金书. 一般球对称带电蒸发黑洞的熵. 物理学报, 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [13] 孙学锋, 刘文彪, 景 玲. 黑洞熵无截断薄层模型的改进与推广. 物理学报, 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [14] 刘文彪, 牛振风. 新Tortoise坐标变换与任意加速带电动态黑洞熵. 物理学报, 2005, 54(1): 475-480. doi: 10.7498/aps.54.475
    [15] 杨树政, 韩亦文, 洪 云. 广义不确定关系与整体单极黑洞Dirac场的熵. 物理学报, 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [16] 杨 波. 变加速直线运动黑洞的温度和Dirac场的熵. 物理学报, 2007, 56(11): 6772-6776. doi: 10.7498/aps.56.6772
    [17] 杨 波. 一般加速带电带磁的动态黑洞中标量场的熵. 物理学报, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [18] 冯维, 丁辉, 林昊, 罗辽复. λ噬菌体溶源/裂解转换调控与定态熵. 物理学报, 2012, 61(16): 168701. doi: 10.7498/aps.61.168701
    [19] 徐红梅, 金永镐, 郭树旭. 电压控制不连续导电模式DC-DC变换器的熵特性研究. 物理学报, 2013, 62(24): 248401. doi: 10.7498/aps.62.248401
    [20] 魏志勇, 段利敏, 吴和宇, 靳根明, 李祖玉, 诸永泰, 郗洪飞, 肖志刚, 王宏伟, 张保国, 柳永英, 王素芳, 胡荣江, 沈文庆. 35MeV/u40Ar+197Au中的熵产生. 物理学报, 2001, 50(4): 649-654. doi: 10.7498/aps.50.649
  • 引用本文:
    Citation:
计量
  • 文章访问数:  838
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01
  • 修回日期:  2017-06-21
  • 刊出日期:  2017-09-05

熵在非晶材料合成中的作用

  • 1. 北京科技大学, 新金属材料国家重点实验室, 北京 100083
  • 通信作者: 张勇, drzhangy@ustb.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51471025,51671020)资助的课题.

摘要: 熵作为系统的状态函数,对于真实物质体系而言是一个极为重要的物理量.在非晶态合金的制备过程中最具代表性的指导原则有“混乱原理”和井上三原则,二者皆与熵有着紧密的联系.在过去很长一段时间内,这些经验准则指导了大量新型非晶体系的发现,但近些年的实验结果对这些理论提出了质疑.除组元数目之外,还有其他尚待研究的因素也影响着合金体系的玻璃形成能力.本文总结了玻璃转变过程中熵在热力学条件、动力学条件和结构条件中所扮演的角色,阐述了其对玻璃形成能力产生的或正或反的影响.特别是对近几年发展起来的高熵非晶体系的研究有助于开发出临界尺寸更大的非晶合金,也有助于进一步探索多组元合金和非晶形成能力之间的关系.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回