搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究

吴晓笛 刘华坪 陈浮

基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究

吴晓笛, 刘华坪, 陈浮
PDF
导出引用
  • 针对流固耦合问题,发展了基于浸入边界-多松弛时间格子玻尔兹曼通量求解法(immersed boundary method multi-relaxation-time lattice Boltzmann flux solver,IB-MRT-LBFS)的弱耦合算法.依据多尺度Chapman-Enskog展开,建立不可压宏观方程状态变量和通量与格子玻尔兹曼方程中粒子密度分布函数之间的关系;采用强制浸入边界法处理流固界面使固壁表面满足无滑移边界条件,根据修正的速度求解动量方程力源项;结构运动方程采用四阶龙格-库塔法求解.格子模型与浸入边界法的引入使流固耦合计算可以在笛卡尔网格下进行,无需生成贴体网格及运用动网格技术,简化了计算过程.数值模拟了单圆柱横向涡激振动、单圆柱及串列双圆柱双自由度涡激振动问题.结果表明,IB-MRT-LBFS能够准确预测圆柱涡激振动的锁定区间、振动响应、受力情况以及捕捉尾流场结构形态,验证了该算法在求解流固耦合问题的有效性和可行性.
      通信作者: 刘华坪, hgdlhp@163.com
    • 基金项目: 国家自然科学基金(批准号:51306042)资助的课题.
    [1]

    Xing J T, Zhou S, Cui E J 1997 Adv. Mech. 27 19 (in Chinese) [邢景棠, 周盛, 崔尔杰 1997 力学进展 27 19]

    [2]

    Qian R J, Dong S L, Yuan X F (in Chinese) [钱若军, 董石麟, 袁行飞 2008 空间结构 14 3]

    [3]

    Guo P, Liu J, Wu W H 2013 Chin. J. Theor. Appl. Mech. 45 283 (in Chinese) [郭攀, 刘君, 武文华 2013 力学学报 45 283]

    [4]

    Zhou D, He T, Tu J H (in Chinese) [周岱, 何涛, 涂佳黄 2012 力学学报 44 494]

    [5]

    Zhong G H, Liang A, Sun X F 2007 J. Eng. Thermophys. 28 399 (in Chinese) [钟国华, 梁岸, 孙晓峰 2007 工程热物理学报 28 399]

    [6]

    Liu Q Y 2012 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [刘齐迎 2012 硕士学位论文(南京: 南京航空航天大学]

    [7]

    Luo H X, Dai H, Ferreira D S, Paulo J S A, Yin B 2012 Comput. Fluids 56 61

    [8]

    Feng Z, Michaelides E 2004 J. Comput. Phys. 195 602

    [9]

    Chen Y, Cai Q D, Xia Z H, Wang M, Chen S Y 2013 Phys. Rev. E 88 013303

    [10]

    Wang W Q, Zhang G W, Yan Y (in Chinese) [王文全, 张国威, 闫妍 2017 北京理工大学学报 37 151]

    [11]

    Wang W Q, Su S Q, Yan Y (in Chinese) [王文全, 苏仕琪, 闫妍 2015 计算力学学报 32 560]

    [12]

    Ming P J, Zhang W P 2009 Chin. J. Aeronaut. 22 480

    [13]

    Ming P J, Zhang W P, Lu X Q, Zhu M G (in Chinese) [明平剑, 张文平, 卢熙群, 朱明刚 2010 水动力研究与进展 25 321]

    [14]

    Li S Y, Cheng Y G, Zhang C Z 2016 J. Huazhong Univ. Sci. Tech. (Natural Science Edition) 44 122 (in Chinese) [李师尧, 程永光, 张春泽 2016 华中科技大学学报 (自然科学版) 44 122]

    [15]

    Shu C, Wang Y, Teo C J, Wu J 2014 Adv. Appl. Math. Mech. 6 436

    [16]

    Wang Y, Shu C, Teo C J, Wu J 2015 J. Fluids Struct. 54 440

    [17]

    Wang Y, Shu C, Yang L M, Sun Y 2017 Int. J. Numer. Meth. Fluids 83 331

    [18]

    Suzuki K, Inamuro T 2011 Comput. Fluids 49 173

    [19]

    Ahn H T, Kallinderis Y 2006 J. Comput. Phys. 219 671

    [20]

    Borazjani I, Ge L, Sotiropoulos F 2008 J. Comput. Phys. 227 7587

    [21]

    Jiang R J, Lin J Z, Chen Z L 2013 Phys. Rev. E 88 023009

    [22]

    Wang C L, Tang H, Duan F, Yu S C M 2016 J. Fluids Struct. 60 160

    [23]

    Han Z L, Zhou D, Tu J H 2014 J. Eng. Mech 140 04014059

    [24]

    Prasanth A K, Mittal S 2008 J. Fluids Mech. 594 463

    [25]

    Bao Y, Huang C, Zhou D, Tu J H, Han Z L 2012 J.Fluids Struct. 35 50

    [26]

    Yu K R, Etienne S Scolan, Y M, Hay A, Fontaine E, Pelletier D 2016 J. Fluids Struct. 60 37

  • [1]

    Xing J T, Zhou S, Cui E J 1997 Adv. Mech. 27 19 (in Chinese) [邢景棠, 周盛, 崔尔杰 1997 力学进展 27 19]

    [2]

    Qian R J, Dong S L, Yuan X F (in Chinese) [钱若军, 董石麟, 袁行飞 2008 空间结构 14 3]

    [3]

    Guo P, Liu J, Wu W H 2013 Chin. J. Theor. Appl. Mech. 45 283 (in Chinese) [郭攀, 刘君, 武文华 2013 力学学报 45 283]

    [4]

    Zhou D, He T, Tu J H (in Chinese) [周岱, 何涛, 涂佳黄 2012 力学学报 44 494]

    [5]

    Zhong G H, Liang A, Sun X F 2007 J. Eng. Thermophys. 28 399 (in Chinese) [钟国华, 梁岸, 孙晓峰 2007 工程热物理学报 28 399]

    [6]

    Liu Q Y 2012 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [刘齐迎 2012 硕士学位论文(南京: 南京航空航天大学]

    [7]

    Luo H X, Dai H, Ferreira D S, Paulo J S A, Yin B 2012 Comput. Fluids 56 61

    [8]

    Feng Z, Michaelides E 2004 J. Comput. Phys. 195 602

    [9]

    Chen Y, Cai Q D, Xia Z H, Wang M, Chen S Y 2013 Phys. Rev. E 88 013303

    [10]

    Wang W Q, Zhang G W, Yan Y (in Chinese) [王文全, 张国威, 闫妍 2017 北京理工大学学报 37 151]

    [11]

    Wang W Q, Su S Q, Yan Y (in Chinese) [王文全, 苏仕琪, 闫妍 2015 计算力学学报 32 560]

    [12]

    Ming P J, Zhang W P 2009 Chin. J. Aeronaut. 22 480

    [13]

    Ming P J, Zhang W P, Lu X Q, Zhu M G (in Chinese) [明平剑, 张文平, 卢熙群, 朱明刚 2010 水动力研究与进展 25 321]

    [14]

    Li S Y, Cheng Y G, Zhang C Z 2016 J. Huazhong Univ. Sci. Tech. (Natural Science Edition) 44 122 (in Chinese) [李师尧, 程永光, 张春泽 2016 华中科技大学学报 (自然科学版) 44 122]

    [15]

    Shu C, Wang Y, Teo C J, Wu J 2014 Adv. Appl. Math. Mech. 6 436

    [16]

    Wang Y, Shu C, Teo C J, Wu J 2015 J. Fluids Struct. 54 440

    [17]

    Wang Y, Shu C, Yang L M, Sun Y 2017 Int. J. Numer. Meth. Fluids 83 331

    [18]

    Suzuki K, Inamuro T 2011 Comput. Fluids 49 173

    [19]

    Ahn H T, Kallinderis Y 2006 J. Comput. Phys. 219 671

    [20]

    Borazjani I, Ge L, Sotiropoulos F 2008 J. Comput. Phys. 227 7587

    [21]

    Jiang R J, Lin J Z, Chen Z L 2013 Phys. Rev. E 88 023009

    [22]

    Wang C L, Tang H, Duan F, Yu S C M 2016 J. Fluids Struct. 60 160

    [23]

    Han Z L, Zhou D, Tu J H 2014 J. Eng. Mech 140 04014059

    [24]

    Prasanth A K, Mittal S 2008 J. Fluids Mech. 594 463

    [25]

    Bao Y, Huang C, Zhou D, Tu J H, Han Z L 2012 J.Fluids Struct. 35 50

    [26]

    Yu K R, Etienne S Scolan, Y M, Hay A, Fontaine E, Pelletier D 2016 J. Fluids Struct. 60 37

  • [1] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [2] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [3] 胡兵, 郁殿龙, 刘江伟, 朱付磊, 张振方. 流固耦合声子晶体管路冲击振动特性研究. 物理学报, 2020, 69(19): 194301. doi: 10.7498/aps.69.20200414
    [4] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [5] 辛建建, 陈振雷, 石凡, 石伏龙. 基于直角网格法的单个和阵列布置下柔性水翼绕流数值模拟. 物理学报, 2020, 69(4): 044702. doi: 10.7498/aps.69.20191711
    [6] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [7] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究. 物理学报, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [8] 辛建建, 石伏龙, 金秋. 一种径向基函数虚拟网格法数值模拟复杂边界流动. 物理学报, 2017, 66(4): 044704. doi: 10.7498/aps.66.044704
    [9] 李强, 李五明. 带嵌件型腔内熔接过程的数值模拟研究. 物理学报, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [10] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响. 物理学报, 2018, 67(21): 218701. doi: 10.7498/aps.67.20180305
    [11] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析. 物理学报, 2012, 61(12): 124701. doi: 10.7498/aps.61.124701
    [12] 孙健, 刘伟强. 疏导式结构在头锥热防护中的应用. 物理学报, 2012, 61(17): 174401. doi: 10.7498/aps.61.174401
    [13] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
    [14] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [15] 杨青, 曹曙阳, 刘十一. 基于浸入式边界方法的串联双矩形柱绕流数值模拟. 物理学报, 2014, 63(21): 214702. doi: 10.7498/aps.63.214702
    [16] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [17] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究. 物理学报, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [18] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [19] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [20] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1129
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-19
  • 修回日期:  2017-08-22
  • 刊出日期:  2017-11-05

基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究

  • 1. 哈尔滨工业大学能源科学与工程学院, 哈尔滨 150001
  • 通信作者: 刘华坪, hgdlhp@163.com
    基金项目: 

    国家自然科学基金(批准号:51306042)资助的课题.

摘要: 针对流固耦合问题,发展了基于浸入边界-多松弛时间格子玻尔兹曼通量求解法(immersed boundary method multi-relaxation-time lattice Boltzmann flux solver,IB-MRT-LBFS)的弱耦合算法.依据多尺度Chapman-Enskog展开,建立不可压宏观方程状态变量和通量与格子玻尔兹曼方程中粒子密度分布函数之间的关系;采用强制浸入边界法处理流固界面使固壁表面满足无滑移边界条件,根据修正的速度求解动量方程力源项;结构运动方程采用四阶龙格-库塔法求解.格子模型与浸入边界法的引入使流固耦合计算可以在笛卡尔网格下进行,无需生成贴体网格及运用动网格技术,简化了计算过程.数值模拟了单圆柱横向涡激振动、单圆柱及串列双圆柱双自由度涡激振动问题.结果表明,IB-MRT-LBFS能够准确预测圆柱涡激振动的锁定区间、振动响应、受力情况以及捕捉尾流场结构形态,验证了该算法在求解流固耦合问题的有效性和可行性.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回