搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应

刘娟 胡锐 范志强 张振华

过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应

刘娟, 胡锐, 范志强, 张振华
PDF
导出引用
导出核心图
  • 基于密度泛函理论的第一性原理计算方法,研究了多种过渡金属(TM)掺杂扶手椅型氮化硼纳米带(ABNNR-TM)的结构特点、磁电子特性及力-磁耦合效应.计算的结合能及分子动力学模拟表明ABNNR-TM的几何结构是较稳定的,同时发现对于不同的TM掺杂,ABNNRs能表现出丰富的磁电子学特性,可以是双极化磁性半导体、一般磁性半导体、无磁半导体或无磁金属.双极化磁性半导体是一种重要的稀磁半导体材料,它在巨磁阻器件和自旋整流器件上有重要的应用.此外,力-磁偶合效应研究表明:ABNNR-TM的磁电子学特性对应力作用十分敏感,能实现无磁金属、无磁半导体、磁金属、磁半导体、双极化磁性半导体、半金属等之间的相变.特别是呈现的宽带隙半金属对于发展自旋电子器件有重要意义.这些结果表明:可以通过力学方法来调控ABNNR-TM的磁电子学特性.
      通信作者: 张振华, lgzzhang@sohu.com
    • 基金项目: 国家自然科学基金(批准号:61771076,61371065,11674039)和湖南省自然科学基金(批准号:14JJ2076,2015JJ3002,2015JJ2009,2015JJ2013)资助的课题.
    [1]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [2]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [3]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [6]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [7]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [8]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [9]

    Liu H X, Zhang H M, Song J X, Zhang Z Y 2010 J. Semicond. 31 013001

    [10]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210

    [11]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [12]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Brink J V D 2007 Phys. Rev. B 76 073103

    [13]

    Topsakal M, Aktrk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [14]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [15]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y S, Golberg D 2010 Nano Lett. 10 5049

    [16]

    Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M, Zettl A K 2011 Nano Lett. 11 3221

    [17]

    Li Y, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [18]

    An L P, Liu N H 2011 J. Semicond. 32 092002

    [19]

    Chen T, Li X F, Wang L L, Luo K W, Xu L 2014 J. Appl. Phys. 116 013702

    [20]

    Park C H, Louie S G 2008 Nano Lett. 8 2200

    [21]

    Xu L, Wang L L, Huang W Q, Li X F, Xiao W Z 2014 Physica E 63 259

    [22]

    Ma D W, Ju W W, Chu X L, Lu Z S, Fu Z M 2013 Phys. Lett. A 377 1016

    [23]

    Han Y, Li R, Zhou J, Dong J M, Kawazoe Y 2014 Nanotechnology 25 115702

    [24]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401

    [25]

    Qi J S, Qian X F, Qi L, Feng J, Shi D N, Li J 2012 Nano Lett. 12 1224

    [26]

    Lai L, Lu J, Wang L, Luo G F, Zhou J, Qin R, Gao Z X, Mei W N 2009 J. Phys. Chem. C 113 2273

    [27]

    Wang Y L, Ding Y, Ni J 2011 Appl. Phys. Lett. 99 053123

    [28]

    Luo K W, Wang L L, Li Q, Chen T, Xu L 2015 J. Semicond. 36 082003

    [29]

    Luo N N, Si C, Duan W H 2017 Phys. Rev. B 95 205432

    [30]

    Si C, Zhou J, Sun Z M 2015 ACS Appl. Mater. Interfaces 7 17510

    [31]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [32]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175

    [33]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [34]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [35]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 32575

    [36]

    Zhang J J, Zhang Z H, Tang G P, Deng X Q, Fan Z Q 2014 Org. Electron 15 1338

    [37]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [38]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 5664

    [39]

    Wang D, Zhang Z, Zhu Z, Liang B Gong C, Li L, Li Z, et al. 2017 Nature Doi:101038/na-ture 22060

    [40]

    Wang D, Zhang Z, Zhang J, Deng X, Fan Z, Tang G 2015 Carbon 94 996

    [41]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [42]

    Zhang Z, Liu X, Yu J, et al. 2016 WIREs Comput. Mole. Sci. 6 324

  • [1]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [2]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [3]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [6]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [7]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [8]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [9]

    Liu H X, Zhang H M, Song J X, Zhang Z Y 2010 J. Semicond. 31 013001

    [10]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210

    [11]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [12]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Brink J V D 2007 Phys. Rev. B 76 073103

    [13]

    Topsakal M, Aktrk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [14]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [15]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y S, Golberg D 2010 Nano Lett. 10 5049

    [16]

    Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M, Zettl A K 2011 Nano Lett. 11 3221

    [17]

    Li Y, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [18]

    An L P, Liu N H 2011 J. Semicond. 32 092002

    [19]

    Chen T, Li X F, Wang L L, Luo K W, Xu L 2014 J. Appl. Phys. 116 013702

    [20]

    Park C H, Louie S G 2008 Nano Lett. 8 2200

    [21]

    Xu L, Wang L L, Huang W Q, Li X F, Xiao W Z 2014 Physica E 63 259

    [22]

    Ma D W, Ju W W, Chu X L, Lu Z S, Fu Z M 2013 Phys. Lett. A 377 1016

    [23]

    Han Y, Li R, Zhou J, Dong J M, Kawazoe Y 2014 Nanotechnology 25 115702

    [24]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401

    [25]

    Qi J S, Qian X F, Qi L, Feng J, Shi D N, Li J 2012 Nano Lett. 12 1224

    [26]

    Lai L, Lu J, Wang L, Luo G F, Zhou J, Qin R, Gao Z X, Mei W N 2009 J. Phys. Chem. C 113 2273

    [27]

    Wang Y L, Ding Y, Ni J 2011 Appl. Phys. Lett. 99 053123

    [28]

    Luo K W, Wang L L, Li Q, Chen T, Xu L 2015 J. Semicond. 36 082003

    [29]

    Luo N N, Si C, Duan W H 2017 Phys. Rev. B 95 205432

    [30]

    Si C, Zhou J, Sun Z M 2015 ACS Appl. Mater. Interfaces 7 17510

    [31]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [32]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175

    [33]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [34]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [35]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 32575

    [36]

    Zhang J J, Zhang Z H, Tang G P, Deng X Q, Fan Z Q 2014 Org. Electron 15 1338

    [37]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [38]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 5664

    [39]

    Wang D, Zhang Z, Zhu Z, Liang B Gong C, Li L, Li Z, et al. 2017 Nature Doi:101038/na-ture 22060

    [40]

    Wang D, Zhang Z, Zhang J, Deng X, Fan Z, Tang G 2015 Carbon 94 996

    [41]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [42]

    Zhang Z, Liu X, Yu J, et al. 2016 WIREs Comput. Mole. Sci. 6 324

  • [1] 李野华, 范志强, 张振华. 非金属原子边缘修饰InSe纳米带的磁电子学特性及应变调控. 物理学报, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [2] 韩佳凝, 范志强, 张振华. Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应. 物理学报, 2019, 68(20): 208502. doi: 10.7498/aps.68.20191103
    [3] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质. 物理学报, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [4] 王道俊. 氮化硼纳米片的电子结构和自旋调控. 物理学报, 2013, 62(5): 057302. doi: 10.7498/aps.62.057302
    [5] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [6] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [7] 何开华, 郑 广, 吕 涛, 陈 刚, 姬广富. 高压对氮化硼纳米管的几何结构、电子结构和光学性质的影响. 物理学报, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [8] 何国伟, 胡岗, 陈一, 王震遐, 李学鹏, 余礼平, 马余刚, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长. 物理学报, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [9] 李剑锋, 姚连增, 蔡维理, 牟季美. 氮化硼包覆纳米氧化锌体系的光致发光特性研究. 物理学报, 2001, 50(8): 1623-1626. doi: 10.7498/aps.50.1623
    [10] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [11] 袁剑辉, 雷钦文, 刘其城. 碳纳米管与氮化硼纳米管内铝纳米线的形成及其复合结构抗压特性的模拟研究. 物理学报, 2019, 68(18): 186101. doi: 10.7498/aps.68.20190137
    [12] 肖佳勇, 谭兴毅, 杨贝贝, 任达华, 左安友, 傅华华. 氮化硼纳米带功能化碳纳米管的热自旋输运性质. 物理学报, 2019, 68(5): 057301. doi: 10.7498/aps.68.20181968
    [13] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [14] 肖化平, 陈元平, 杨凯科, 魏晓林, 孙立忠, 钟建新. 无序双层六角氮化硼量子薄膜的电子性质. 物理学报, 2012, 61(17): 178101. doi: 10.7498/aps.61.178101
    [15] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [16] 陈光华, 马锡英, 岳金顺, 贺德衍. 立方氮化硼薄膜的生长特性与粘附性研究. 物理学报, 1998, 47(5): 871-875. doi: 10.7498/aps.47.871
    [17] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序. 物理学报, 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [18] 林峰, 李缵轶, 王山鹰. TiO2纳米管的力学和电子学性质. 物理学报, 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [19] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙. 物理学报, 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [20] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  610
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-25
  • 修回日期:  2017-08-10
  • 刊出日期:  2017-12-05

过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
  • 通信作者: 张振华, lgzzhang@sohu.com
    基金项目: 

    国家自然科学基金(批准号:61771076,61371065,11674039)和湖南省自然科学基金(批准号:14JJ2076,2015JJ3002,2015JJ2009,2015JJ2013)资助的课题.

摘要: 基于密度泛函理论的第一性原理计算方法,研究了多种过渡金属(TM)掺杂扶手椅型氮化硼纳米带(ABNNR-TM)的结构特点、磁电子特性及力-磁耦合效应.计算的结合能及分子动力学模拟表明ABNNR-TM的几何结构是较稳定的,同时发现对于不同的TM掺杂,ABNNRs能表现出丰富的磁电子学特性,可以是双极化磁性半导体、一般磁性半导体、无磁半导体或无磁金属.双极化磁性半导体是一种重要的稀磁半导体材料,它在巨磁阻器件和自旋整流器件上有重要的应用.此外,力-磁偶合效应研究表明:ABNNR-TM的磁电子学特性对应力作用十分敏感,能实现无磁金属、无磁半导体、磁金属、磁半导体、双极化磁性半导体、半金属等之间的相变.特别是呈现的宽带隙半金属对于发展自旋电子器件有重要意义.这些结果表明:可以通过力学方法来调控ABNNR-TM的磁电子学特性.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回