搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

囚禁单离子的量子阻尼运动

李金晴 罗云荣 海文华

囚禁单离子的量子阻尼运动

李金晴, 罗云荣, 海文华
PDF
导出引用
导出核心图
  • 用包含偶极和四极虚势能项的非厄米哈密顿算符来描述Paul阱中囚禁阻尼单离子在静电场下的量子运动.通过导出和分析系统的精确解,得到在PT对称和不对称情形下的不同实能谱与稳定量子态,以及PT不对称情形的虚能谱和衰减量子态,同时给出相应于不同态的参数区域和存活概率.结果发现该非厄米系统外场参数能惟一确定量子稳定态并导致波函数形态变化,据此提出非相干操控相应量子跃迁的方法.让量子态衰减导致的离子位置期待值的衰减与经典阻尼谐振子的衰减一致,得到虚势能参数与经典阻尼参数的对应关系.所得结果将进一步丰富具有广泛应用背景的囚禁离子动力学.
      通信作者: 海文华, whhai2005@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:11475060)、湖南省研究生科研创新项目(批准号:CX2017B222)和湖南省自然科学基金(批准号:2017JJ3208)资助的课题.
    [1]

    Wineland D J 2013 Rev. Mod. Phys. 85 1103

    [2]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209

    [3]

    Singer K, Poschinger U, Murphy M, Ivanov P, Ziesel F, Calarco T, Schmidt-Kaler F 2010 Rev. Mod. Phys. 82 2609

    [4]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281

    [5]

    Soderberg K A B, Monroe C 2010 Rep. Prog. Phys. 73 036401

    [6]

    DeVoe R G, Hoffnagle J, Brewer R G 1989 Phys. Rev. A 39 4362

    [7]

    Blmel R 1995 Phys. Rev. A 51 620

    [8]

    Nam Y S, Jones E B, Blmel R 2014 Phys. Rev. A 90 013402

    [9]

    Weiss D K, Nam Y S, Blmel R 2016 Phys. Rev. A 93 043424

    [10]

    Hai W H, Duan Y W, Zhu X W, Shi L, Luo X L, He C S 1997 Acta Phys. Sin. 46 2217 (in Chinese)[海文华, 段宜武, 朱熙文, 施磊, 罗学立, 何春山 1997 物理学报 46 2217]

    [11]

    Mihalcea B M, Vişan G G 2010 Phys. Scr. T 140 014057

    [12]

    Peng H W 1980 Acta Phys. Sin. 29 1084 (in Chinese)[彭桓武 1980 物理学报 29 1084]

    [13]

    Gzyl H 1983 Phys. Rev. A 27 2297

    [14]

    Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, Ozeri R 2010 Phys. Rev. A 82 061402

    [15]

    Fidio C D, Vogel W 2000 Phys. Rev. A 62 031802

    [16]

    Gong S J, Zhou F, Wu H Y, Wan W, Chen L, Feng M 2015 Chin. Phys. Lett. 32 013201

    [17]

    Bazrafkan M R, Ashrafi S M, Naghdi F 2014 Chin. Phys. Lett. 31 070303

    [18]

    Klimov A B, Romero J L, Delgado J, Sánchez-Soto L L 2004 Opt. Commun. 230 393

    [19]

    Jiang Z, Chen P X 2012 Acta Phys. Sin. 61 014209 (in Chinese)[蒋智, 陈平形 2012 物理学报 61 014209]

    [20]

    Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P, Zoller P 2006 Phys. Rev. Lett. 96 043003

    [21]

    Eleuch H, Rotter I 2017 Phys. Rev. A 95 022117

    [22]

    Dattoli G, Torre A, Mignani R 1990 Phys. Rev. A 42 1467

    [23]

    Li J H, Yu R, Ding C L, Wu Y 2016 Phys. Rev. A 93 023814

    [24]

    Santra R, Cederbaum L S 2002 Phys. Rep. 368 1

    [25]

    Longhi S 2016 Europhys. Lett. 115 61001

    [26]

    Jin L, Song Z 2009 Phys. Rev. A 80 052107

    [27]

    Jin L, Song Z 2010 Phys. Rev. A 81 032109

    [28]

    Zhong H H, Hai W H, Lu G B, Li Z J 2011 Phys. Rev. A 84 013401

    [29]

    Xiao K W, Hai W H, Liu J 2012 Phys. Rev. A 85 013410

    [30]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [31]

    Chen Z J, Ning X J 2003 Acta Phys. Sin. 52 2683 (in Chinese)[陈增军, 宁西京 2003 物理学报 52 2683]

    [32]

    Baradaran M, Panahi H 2017 Chin. Phys. B 26 060301

    [33]

    Wang X Y, Chen H Z, Li Y, Li B, Ma R M 2016 Chin. Phys. B 25 124211

    [34]

    Graefe E M, Höning M, Korsch H J 2010 J. Phys. A:Math. Theor. 43 075306

    [35]

    Caldeira A O, Leggett A J 1985 Phys. Rev. A 31 1059

    [36]

    Gu Y 1996 Quantum Chaos (Shanghai:Shanghai Scientific and Technological Education Press) (in Chinese)[顾雁 1996 量子混沌 (上海:上海科技教育出版社)]

    [37]

    Casati G, Guarneri I, Maspero G 2000 Phys. Rev. Lett. 84 63

    [38]

    Wimberger S, Krug A, Buchleitner A 2002 Phys. Rev. Lett. 89 263601

    [39]

    Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S, Monroe C 2013 Phys. Rev. Lett. 110 203001

    [40]

    Chen Q, Hai K, Hai W H 2010 J. Phys. A:Math. Theor. 43 455302

    [41]

    Hai K, Luo Y R, Chong G S, Chen H, Hai W H 2017 Quantum Inf. Comput. 17 456

    [42]

    Chen Y H, She L, Wang M, Yang Z H, Liu H, Li J M 2016 Chin. Phys. B 25 120601

    [43]

    Yang M R, Hai W H, Lu G B, Zhong H H 2010 Acta Phys. Sin. 59 2406 (in Chinese)[杨美蓉, 海文华, 鲁耿彪, 钟宏华 2010 物理学报 59 2406]

  • [1]

    Wineland D J 2013 Rev. Mod. Phys. 85 1103

    [2]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209

    [3]

    Singer K, Poschinger U, Murphy M, Ivanov P, Ziesel F, Calarco T, Schmidt-Kaler F 2010 Rev. Mod. Phys. 82 2609

    [4]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281

    [5]

    Soderberg K A B, Monroe C 2010 Rep. Prog. Phys. 73 036401

    [6]

    DeVoe R G, Hoffnagle J, Brewer R G 1989 Phys. Rev. A 39 4362

    [7]

    Blmel R 1995 Phys. Rev. A 51 620

    [8]

    Nam Y S, Jones E B, Blmel R 2014 Phys. Rev. A 90 013402

    [9]

    Weiss D K, Nam Y S, Blmel R 2016 Phys. Rev. A 93 043424

    [10]

    Hai W H, Duan Y W, Zhu X W, Shi L, Luo X L, He C S 1997 Acta Phys. Sin. 46 2217 (in Chinese)[海文华, 段宜武, 朱熙文, 施磊, 罗学立, 何春山 1997 物理学报 46 2217]

    [11]

    Mihalcea B M, Vişan G G 2010 Phys. Scr. T 140 014057

    [12]

    Peng H W 1980 Acta Phys. Sin. 29 1084 (in Chinese)[彭桓武 1980 物理学报 29 1084]

    [13]

    Gzyl H 1983 Phys. Rev. A 27 2297

    [14]

    Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, Ozeri R 2010 Phys. Rev. A 82 061402

    [15]

    Fidio C D, Vogel W 2000 Phys. Rev. A 62 031802

    [16]

    Gong S J, Zhou F, Wu H Y, Wan W, Chen L, Feng M 2015 Chin. Phys. Lett. 32 013201

    [17]

    Bazrafkan M R, Ashrafi S M, Naghdi F 2014 Chin. Phys. Lett. 31 070303

    [18]

    Klimov A B, Romero J L, Delgado J, Sánchez-Soto L L 2004 Opt. Commun. 230 393

    [19]

    Jiang Z, Chen P X 2012 Acta Phys. Sin. 61 014209 (in Chinese)[蒋智, 陈平形 2012 物理学报 61 014209]

    [20]

    Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P, Zoller P 2006 Phys. Rev. Lett. 96 043003

    [21]

    Eleuch H, Rotter I 2017 Phys. Rev. A 95 022117

    [22]

    Dattoli G, Torre A, Mignani R 1990 Phys. Rev. A 42 1467

    [23]

    Li J H, Yu R, Ding C L, Wu Y 2016 Phys. Rev. A 93 023814

    [24]

    Santra R, Cederbaum L S 2002 Phys. Rep. 368 1

    [25]

    Longhi S 2016 Europhys. Lett. 115 61001

    [26]

    Jin L, Song Z 2009 Phys. Rev. A 80 052107

    [27]

    Jin L, Song Z 2010 Phys. Rev. A 81 032109

    [28]

    Zhong H H, Hai W H, Lu G B, Li Z J 2011 Phys. Rev. A 84 013401

    [29]

    Xiao K W, Hai W H, Liu J 2012 Phys. Rev. A 85 013410

    [30]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [31]

    Chen Z J, Ning X J 2003 Acta Phys. Sin. 52 2683 (in Chinese)[陈增军, 宁西京 2003 物理学报 52 2683]

    [32]

    Baradaran M, Panahi H 2017 Chin. Phys. B 26 060301

    [33]

    Wang X Y, Chen H Z, Li Y, Li B, Ma R M 2016 Chin. Phys. B 25 124211

    [34]

    Graefe E M, Höning M, Korsch H J 2010 J. Phys. A:Math. Theor. 43 075306

    [35]

    Caldeira A O, Leggett A J 1985 Phys. Rev. A 31 1059

    [36]

    Gu Y 1996 Quantum Chaos (Shanghai:Shanghai Scientific and Technological Education Press) (in Chinese)[顾雁 1996 量子混沌 (上海:上海科技教育出版社)]

    [37]

    Casati G, Guarneri I, Maspero G 2000 Phys. Rev. Lett. 84 63

    [38]

    Wimberger S, Krug A, Buchleitner A 2002 Phys. Rev. Lett. 89 263601

    [39]

    Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S, Monroe C 2013 Phys. Rev. Lett. 110 203001

    [40]

    Chen Q, Hai K, Hai W H 2010 J. Phys. A:Math. Theor. 43 455302

    [41]

    Hai K, Luo Y R, Chong G S, Chen H, Hai W H 2017 Quantum Inf. Comput. 17 456

    [42]

    Chen Y H, She L, Wang M, Yang Z H, Liu H, Li J M 2016 Chin. Phys. B 25 120601

    [43]

    Yang M R, Hai W H, Lu G B, Zhong H H 2010 Acta Phys. Sin. 59 2406 (in Chinese)[杨美蓉, 海文华, 鲁耿彪, 钟宏华 2010 物理学报 59 2406]

  • [1] 李飞, 海文华. 激光脉冲作用下囚禁离子的规则与混沌运动. 物理学报, 2004, 53(5): 1309-1315. doi: 10.7498/aps.53.1309
    [2] 海文华, 李 辉, 陈文钦, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, 2007, 56(3): 1305-1312. doi: 10.7498/aps.56.1305
    [3] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动. 物理学报, 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [4] 海文华, 宋建文, 陈文钦. 双δ激光脉冲作用下Paul阱中单离子的规则与混沌运动. 物理学报, 2008, 57(3): 1608-1615. doi: 10.7498/aps.57.1608
    [5] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用. 物理学报, 2005, 54(3): 1156-1161. doi: 10.7498/aps.54.1156
    [6] 汪仲清, 段昌奎, 安广雷. 囚禁离子的非线性Jaynes-Cummings模型及其布居数反转演化. 物理学报, 2006, 55(7): 3438-3442. doi: 10.7498/aps.55.3438
    [7] 艾凌艳, 杨 健, 张智明. 基于二维囚禁离子实现受控非门、交换门和相位门. 物理学报, 2008, 57(9): 5589-5592. doi: 10.7498/aps.57.5589
    [8] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, 2010, 59(3): 1780-1785. doi: 10.7498/aps.59.1780
    [9] 方卯发, 刘翔. 驻波激光场中囚禁离子内外自由度的周期纠缠. 物理学报, 2001, 50(12): 2363-2368. doi: 10.7498/aps.50.2363
    [10] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [11] 陈增军, 宁西京. 非厄米哈密顿量的物理意义. 物理学报, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [12] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [13] 邬云文, 海文华. 共面两囚禁离子体系精确的量子运动. 物理学报, 2006, 55(11): 5721-5727. doi: 10.7498/aps.55.5721
    [14] 杨子元. 晶体材料中3d2态离子自旋哈密顿参量的微观起源. 物理学报, 2004, 53(6): 1981-1988. doi: 10.7498/aps.53.1981
    [15] 张 淼, 贾焕玉. 非Lamb-Dicke近似下制备囚禁冷离子的振动相干态. 物理学报, 2008, 57(2): 880-886. doi: 10.7498/aps.57.880
    [16] 郝 跃, 杨子元. 四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究. 物理学报, 2005, 54(6): 2883-2892. doi: 10.7498/aps.54.2883
    [17] 杨子元, 王参军, 许启明, 魏 群. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [18] 杨子元. 立方对称晶场中6S(3d5)态离子的磁相互作用及其自旋哈密顿参量的微观起源. 物理学报, 2008, 57(7): 4512-4520. doi: 10.7498/aps.57.4512
    [19] 林福成, 黄武汉, 祝继康. 推广的等效自旋哈密顿. 物理学报, 1964, 20(11): 1114-1123. doi: 10.7498/aps.20.1114
    [20] 楼智美. 哈密顿Ermakov系统的形式不变性. 物理学报, 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
  • 引用本文:
    Citation:
计量
  • 文章访问数:  619
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-26
  • 修回日期:  2017-09-13
  • 刊出日期:  2017-12-05

囚禁单离子的量子阻尼运动

  • 1. 湖南师范大学物理系, 低维量子结构与调控教育部重点实验室, 湖南省量子效应及其应用协同创新中心, 长沙 410081
  • 通信作者: 海文华, whhai2005@aliyun.com
    基金项目: 

    国家自然科学基金(批准号:11475060)、湖南省研究生科研创新项目(批准号:CX2017B222)和湖南省自然科学基金(批准号:2017JJ3208)资助的课题.

摘要: 用包含偶极和四极虚势能项的非厄米哈密顿算符来描述Paul阱中囚禁阻尼单离子在静电场下的量子运动.通过导出和分析系统的精确解,得到在PT对称和不对称情形下的不同实能谱与稳定量子态,以及PT不对称情形的虚能谱和衰减量子态,同时给出相应于不同态的参数区域和存活概率.结果发现该非厄米系统外场参数能惟一确定量子稳定态并导致波函数形态变化,据此提出非相干操控相应量子跃迁的方法.让量子态衰减导致的离子位置期待值的衰减与经典阻尼谐振子的衰减一致,得到虚势能参数与经典阻尼参数的对应关系.所得结果将进一步丰富具有广泛应用背景的囚禁离子动力学.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回