搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用质子能损检测气体靶区有效靶原子密度的实验研究

陈燕红 程锐 张敏 周贤明 赵永涛 王瑜玉 雷瑜 麻鹏鹏 王昭 任洁茹 马新文 肖国青

引用本文:
Citation:

利用质子能损检测气体靶区有效靶原子密度的实验研究

陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青

Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss

Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing
PDF
导出引用
  • 准确测量气态靶区的有效靶原子密度能够提升离子与气体和离子与等离子体靶相互作用实验结果的精度和对物理过程的认识.实验中利用离子加速器引出的100 keV质子束穿过一定长度的氢气靶,对质子的剩余能量进行了精确测量,获得了在气体靶内的质子能损数据,结合已有的能损研究结果,重新标定了气体靶区内的有效靶原子密度.分别比较了能损、电离型真空计IonIVac ITR 90和薄膜电容型真空计Varian CDG-500的实验测量结果,对比了修正后的电离型真空计有效气压曲线,结果发现质子束能损的测量方式具有原位、高准确性、在线监测等突出优势,为诊断气态靶有效原子密度提供了新的方法.
    The investigations of interaction processes between ion beams and gas and between ion beams and plasma play important roles in atomic physics, astrophysics, high energy density physics, and inertial confinement fusion.The atomic density of target is one of the key experimental parameters which may determine the interaction mechanism and experimental results.How to precisely diagnose the atomic density of target in different matter states, like gas phase and plasma phase, is challenging work on the experiments in laboratory.Conventionally the vacuum gauges are used to measure the pressure inside the gas target, but the accuracy is limited for a complex target system and they can hardly work in a strong radiation surrounding, especially in plasma where the high temperature can physically damage the gauges.Therefore we propose a new method to measure the atomic densities for both gas target and plasma target based on the heavy ion beam accelerator facility at the Institute of Modern Physics, Chinese Academy of Sciences.In our experiment the protons are extracted from an electron cyclotron resonance ion source (ECRIS) and accelerated to 100 keV then transmitted to the target.A two-stage differential pumping system is constructed to keep 10-7 mbar order of magnitude in beam line when the gas is filled into the target area where the pressure could increase to higher than 1 mbar.A 45 dipole magnet is used to bend the protons which have passed through the gas.The energy is determined by the different positions of protons at the position-sensitive detector which is placed at the end of magnet.Consequently the energy losses of protons at different pressures are obtained.There have been proposed many theories for calculating the energy loss of protons in gas, and we chose the very popular code named SRIM to simulate the experimental case. Finally the effective linear atomic density of target along the ion beam trajectory in the target area is obtained.For comparison, the conventional vacuum gauges (one is the hot cathode gauge-IonIVac ITR 90 and the other is capacitance diaphragm gauge-Varian CDG-500) are simultaneously used in the experiment.The results show that the recalibrated effective pressure obtained by the energy loss is close to the pressure measured by Varian CDG-500 but much lower than the pressure from IonIVac ITR 90.Only after the detection efficiency correction, could the corrected results of IonIVac ITR 90 be coincident with the effective pressure obtained according to energy loss.Moreover we find that the effective atomic density determined by the protons energy loss shows that these advantages over the conventional gauges are not only the high accuracy and reliability but also the in-situ measurement, high temporal resolution and the ability to work in the complex radiation and hot plasma environment.These properties may play a great role in the experimental researches and relevant topics.
      通信作者: 程锐, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn ; 赵永涛, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2017YFA0402303)和国家自然科学基金(批准号:U1532263,11505248,11375034,11775042,11775278,11605147)资助的课题.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn ; Zhao Yong-Tao, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0402303) and the National Natural Science Foundation of China (Grant Nos. U1532263, 11505248, 11375034, 11775042, 11775278, 11605147).
    [1]

    Bohr N 1913 Philos. Mag. 25 10

    [2]

    Hoffmann D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313

    [3]

    Jacoby J, Hoffmann D H H, Laux W, Mller R W, Wahl H, Weyrich K, Boggasch E, Heimric B, Stöckl C, Wetzler H, Miyamoto S 1995 Phys. Rev. Lett. 74 1550

    [4]

    Grande P L, Schiwiztz G 1998 Phys. Rev. A 58 3796

    [5]

    Bethe H 1930 Ann. Phys. 397 325

    [6]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch D, Maynard G 1990 Laser Particle Beams 8 575

    [7]

    Koshkarev D G 2002 Las. Part. Beams 20 595

    [8]

    Deutsch C, Maynard G, Bimbot R, Gardes D, DellaNegra S, Dumail M, Kubica B, Richard A, Rivet M F, Servajean A, Fleurier C, Sanba A, Hoffmann D H H, Weyrich K, Wahl H 1989 Nucl. Inst. Meth. Phys. Res. A 278 38

    [9]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R,Haas R,Kunze H, Bimbot R, Gardes D, Rievt M F, Deutsch C, Fleurier C 1989 Nucl. Inst. Meth. Phys. Res. A 278 52

    [10]

    Servajean A, Gardes D, Bimbot R, Dumail M, Kubicard B, Richard A, Rivet M F, Fleurier C, Hong D, Deutsch C, Maynard G 1992 J. Appl. Phys. 71 2587

    [11]

    Casas D, Barriga-Carrasco M D, Rubio J, Moralea R 2014 Glob. Nest. J. 16 1085

    [12]

    Belyaev G, Basko M, Cherkasov A, Golubev A, Fertman A, Roudskoy I, Savin S, Sharkov B, Turtikov V, Arzumanov A, Borisenko A, Gorlachev I, Lysukhin S, Hoffmann D H H, Tauschwitz A 1996 Phys. Rev. E 53 2701

    [13]

    Hoffmann D H H, Weyrich K, Wahl H, Peter T, Meyer T V J, Jacoby J, Bimbot R, Gardès D, Rivet M, Dumail M, Fleurier C, Sanba A, Deutsch C, Maynard G, Noll R, Haas R, Arnold R, Masuimann S 1988 Z. Phys. A:Atom. Nucl. 330 339

    [14]

    Wang Y N, Ma T C, Gong Y 1993 Acta Phys. Sin. 42 631 (in Chinese)[王友年, 马腾才, 宫野 1993 物理学报 42 631]

    [15]

    Tsuneta S 1996 Astrophys. J. 456 840

    [16]

    Deng J C, Zhao Y T, Cheng R, Zhou X M, Peng H B, Wang Y Y, Lei Y, Liu S D, Sun Y B, Ren J R, Xiao J H, Ma L D, Xiao G Q, Gavrilin R, Savin S, Golubev A, Hoffmann D H H 2015 Acta Phys. Sin. 64 145202 (in Chinese)[邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, Gavrilin R, Savin S, Golubev A,Hoffmann D H H 2015 物理学报 64 145202]

    [17]

    Cheng R, Zhou X M, Sun Y B, Lei Y, Wang X, Xu G 2011 Phys. Scr. T114 014015

    [18]

    Lu T X 2000 Atomic Nuclear Physics (Vol. 2) (Beijing:Atomic Energy Press) pp55-56 (in Chinese)[卢希庭 2000 原子核物理(第二版)(北京:原子能出版社)第55–56页]

  • [1]

    Bohr N 1913 Philos. Mag. 25 10

    [2]

    Hoffmann D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313

    [3]

    Jacoby J, Hoffmann D H H, Laux W, Mller R W, Wahl H, Weyrich K, Boggasch E, Heimric B, Stöckl C, Wetzler H, Miyamoto S 1995 Phys. Rev. Lett. 74 1550

    [4]

    Grande P L, Schiwiztz G 1998 Phys. Rev. A 58 3796

    [5]

    Bethe H 1930 Ann. Phys. 397 325

    [6]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch D, Maynard G 1990 Laser Particle Beams 8 575

    [7]

    Koshkarev D G 2002 Las. Part. Beams 20 595

    [8]

    Deutsch C, Maynard G, Bimbot R, Gardes D, DellaNegra S, Dumail M, Kubica B, Richard A, Rivet M F, Servajean A, Fleurier C, Sanba A, Hoffmann D H H, Weyrich K, Wahl H 1989 Nucl. Inst. Meth. Phys. Res. A 278 38

    [9]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R,Haas R,Kunze H, Bimbot R, Gardes D, Rievt M F, Deutsch C, Fleurier C 1989 Nucl. Inst. Meth. Phys. Res. A 278 52

    [10]

    Servajean A, Gardes D, Bimbot R, Dumail M, Kubicard B, Richard A, Rivet M F, Fleurier C, Hong D, Deutsch C, Maynard G 1992 J. Appl. Phys. 71 2587

    [11]

    Casas D, Barriga-Carrasco M D, Rubio J, Moralea R 2014 Glob. Nest. J. 16 1085

    [12]

    Belyaev G, Basko M, Cherkasov A, Golubev A, Fertman A, Roudskoy I, Savin S, Sharkov B, Turtikov V, Arzumanov A, Borisenko A, Gorlachev I, Lysukhin S, Hoffmann D H H, Tauschwitz A 1996 Phys. Rev. E 53 2701

    [13]

    Hoffmann D H H, Weyrich K, Wahl H, Peter T, Meyer T V J, Jacoby J, Bimbot R, Gardès D, Rivet M, Dumail M, Fleurier C, Sanba A, Deutsch C, Maynard G, Noll R, Haas R, Arnold R, Masuimann S 1988 Z. Phys. A:Atom. Nucl. 330 339

    [14]

    Wang Y N, Ma T C, Gong Y 1993 Acta Phys. Sin. 42 631 (in Chinese)[王友年, 马腾才, 宫野 1993 物理学报 42 631]

    [15]

    Tsuneta S 1996 Astrophys. J. 456 840

    [16]

    Deng J C, Zhao Y T, Cheng R, Zhou X M, Peng H B, Wang Y Y, Lei Y, Liu S D, Sun Y B, Ren J R, Xiao J H, Ma L D, Xiao G Q, Gavrilin R, Savin S, Golubev A, Hoffmann D H H 2015 Acta Phys. Sin. 64 145202 (in Chinese)[邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, Gavrilin R, Savin S, Golubev A,Hoffmann D H H 2015 物理学报 64 145202]

    [17]

    Cheng R, Zhou X M, Sun Y B, Lei Y, Wang X, Xu G 2011 Phys. Scr. T114 014015

    [18]

    Lu T X 2000 Atomic Nuclear Physics (Vol. 2) (Beijing:Atomic Energy Press) pp55-56 (in Chinese)[卢希庭 2000 原子核物理(第二版)(北京:原子能出版社)第55–56页]

  • [1] 陈燕红, 王昭, 周泽贤, 陶科伟, 金雪剑, 史路林, 王国东, 喻佩, 雷瑜, 吴晓霞, 程锐, 杨杰. 利用质子能损诊断部分电离等离子体靶中的束缚电子密度. 物理学报, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [2] 何民卿, 张华, 李明强, 彭力, 周沧涛. 快点火中质子的能量沉积和神光II升级装置上的质子束的产生. 物理学报, 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子穿越玻璃直管时倾角依赖的输运动力学. 物理学报, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [5] 周斌, 于全芝, 胡志良, 陈亮, 张雪荧, 梁天骄. 高能质子在散裂靶中的能量沉积计算与实验验证. 物理学报, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [6] 游志明, 王洁, 高勇, 范佳锟, 张静, 胡耀程, 王盛, 许章炼, 张琦. 超级质子-质子对撞机束屏内气体密度演化规律研究. 物理学报, 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [7] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [8] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场. 物理学报, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [9] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建. 物理学报, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [11] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [12] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [13] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [14] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面. 物理学报, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [15] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [16] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究. 物理学报, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [17] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱. 物理学报, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [18] 王桂秋, 王友年. 激光场对快速分子离子与固体相互作用的影响. 物理学报, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [19] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] 王友年, 马腾才, 宫野. 重离子束在热靶中的电子阻止本领与有效电荷数. 物理学报, 1993, 42(4): 631-639. doi: 10.7498/aps.42.631
计量
  • 文章访问数:  5213
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-13
  • 修回日期:  2017-12-11
  • 刊出日期:  2019-02-20

/

返回文章
返回