搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算

陈美娜 张蕾 高慧颖 宣言 任俊峰 林子敬

Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算

陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬
PDF
导出引用
导出核心图
  • Sm3+,Sr2+共掺杂CeO2的离子电导率被证实可高达Sm3+掺杂CeO2离子电导率的近两倍,然而,共掺杂对CeO2电导率的作用机理尚不明确.本文利用第一性原理计算的密度泛函理论+U方法,对Sm3+和Sr2+共掺杂的CeO2进行了系统的研究,对比Sm3+或Sr2+单掺杂的CeO2体系,计算并分析了共掺杂体系的电子态密度、能带结构、氧空位形成能以及氧空位迁移能等微观属性.计算结果表明,Sm3+,Sr2+的共掺杂对CeO2基电解质性能的提高具有协同效应,二者的共掺杂不仅能协同抑制CeO2体系的电子电导率,还能在单掺杂CeO2的基础上进一步降低氧空位形成能,Sm3+的存在还有助于降低Sr2+对氧空位的俘获作用,而Sr2+的加入则能够在Sm3+掺杂CeO2的基础上进一步降低最低氧空位迁移能,爬坡式弹性能带方法计算表明共掺杂体系的氧空位迁移能最低可达0.314/0.295 eV,低于Sm3+掺杂CeO2的最低氧空位迁移能.研究揭示了Sm3+,Sr2+共掺杂对CeO2电导率的协同作用机理,对进一步研发其他高性能的共掺杂电解质材料具有重要的指导意义.
      通信作者: 陈美娜, mnchen@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51602183)、山东省自然科学基金(批准号:ZR2014BP003)、中国博士后科学基金(批准号:2015M572074)和山东师范大学本科生科研基金项目(批准号:2017BKSKY35)资助的课题.
    [1]

    Steele B 2000 Solid State Ionics 129 95

    [2]

    Maheshwari A, Wiemhfer H D 2015 Ceram. Int. 41 9122

    [3]

    Shi F 2010 Int. J. Hydrogen Energ. 35 10556

    [4]

    Baqu L, Caneiro A, Moreno M S, Serquis A 2008 Electrochem. Commun. 10 1905

    [5]

    Shi F, Song X P 2010 Int. J. Hydrogen Energ. 35 10620

    [6]

    Tao Z T, Ding H P, Chen X H, Hou G H, Zhang Q F, Tang M, Gu W 2016 J. Alloy. Compd. 663 750

    [7]

    Peng R R, Xia C R, Fu Q X, Meng G Y, Peng D K 2002 Mater. Lett. 56 1043

    [8]

    Shi F, Xiao H T 2013 Int. J. Hydrogen Energ. 38 2318

    [9]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [10]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L 2012 Chem. Chem. Phys. 14 1923

    [11]

    Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S, Tang W H 2009 J. Power Sources 194 830

    [12]

    Shi S Q, Tang Y H, Ouyang C Y, Cui L X, Xin X G, Li P J, Zhou W W, Zhang H, Lei M S, Chen L Q 2010 J. Phys. Chem. Solids 71 788

    [13]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [14]

    Li P J, Zhou W W, Tang Y H, Zhang H, Shi S Q 2010 Acta Phys. Sin. 59 3426 (in Chinese)[李沛娟, 周薇薇, 唐元昊, 张华, 施思齐 2010 物理学报 59 3426]

    [15]

    Bowman W J, Zhu J, Sharma R, Crozier P A 2015 Solid State Ionics 272 9

    [16]

    Zha S W, Xia C R, Meng G Y 2003 J. Power Sources 115 44

    [17]

    Nilsson J O, Vekilova O Y, Hellman O, Klarbring J, Simak S I, Skorodumova N V 2016 Phys. Rev. B 93 024102

    [18]

    Guo C, Wei S X, Zhou S N, Zhang T, Wang Z J, Ng S P, Lu X P, Wu C M L, Guo W Y 2017 ACS Appl. Mater. Inter. 9 26107

    [19]

    Tang Y H, Zhang H, Guan C M, Shen J Q, Shi S Q, Tang W H 2012 Sci. Sin.-Phys. Mech. Astron. 42 914 (in Chinese)[唐元昊, 张华, 管春梅, 沈静琴, 施思齐, 唐为华 2012 中国科学:物理学 力学 天文学 42 914]

    [20]

    Fu Z M, Sun Q, Ma D W, Zhang N, An Y P, Yang Z X 2017 Appl. Phys. Lett. 111 023903

    [21]

    Mogensen M, Sammes N M, Tompsett G A 2000 Solid State Ionics 129 63

    [22]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J S, Chen L Q 2010 Phys. Rev. B 82 125104

    [23]

    Xiong Y P, Yamaji K, Horita T, Sakai N, Yokokawa H 2004 J. Electrochem. Soc. 151 A407

    [24]

    Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z 2003 Solid State Ionics 160 109

    [25]

    Zhang D S, Qian Y L, Shi L Y, Mai H L, Gao R H, Zhang J P, Yu W J, Cao W G 2012 Catal. Commun. 26 164

    [26]

    Zhang T S, Hing P, Huang H T, Kilner J 2002 J. Mater. Sci. 37 997

    [27]

    Singh P, Hegde M 2010 Cryst. Growth Des. 10 2995

    [28]

    Nakayama M, Martin M 2009 Phys. Chem. Chem. Phys. 11 3241

    [29]

    Yahiro H, Eguchi K, Arai H 1989 Solid State Ionics 36 71

    [30]

    Ou D R, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J 2008 Phys. Rev. B 77 024108

    [31]

    Kashyap D, Patro P K, Lenka R K, Mahata T, Sinha P K 2014 Ceram. Int. 40 11869

    [32]

    Jaiswal N, Upadhyay S, Kumar D, Parkash O 2014 Int. J. Hydrogen Energ. 39 543

    [33]

    Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H 2000 Electrochemistry 68 455

    [34]

    Ji Y, Liu J, He T M, Wang J X, Su W H 2005 J. Alloy. Compd. 389 317

    [35]

    Banerjee S, Devi P S, Topwal D, Mandal S, Menon K 2007 Adv. Funct. Mater. 17 2847

    [36]

    Cioateră N, Parvulescu V, Rolle A, Vannier R 2009 Solid State Ionics 180 681

    [37]

    Kasse R M, Nino J C 2013 J. Alloy. Compd. 575 399

    [38]

    Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T 2001 Solid State Ionics 140 191

    [39]

    Burbano M, Nadin S, Marrocchelli D, Salanne M, Watson G W 2014 Phys. Chem. Chem. Phys. 16 8320

    [40]

    Andersson D A, Simak S I, Skorodumova N V, Abrikosov I A, Johansson B 2006 Proc. Natl. Acad. Sci. USA 103 3518

    [41]

    Alaydrus M, Sakaue M, Aspera S M, Wungu T D, Linh T P, Kasai H, Ishihara T, Mohri T 2013 J. Phys.:Condens. Mater. 25 225401

    [42]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [43]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]

    Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W 2005 Surf. Sci. 576 217

    [46]

    Feng J, Xiao B, Wan C, Qu Z, Huang Z, Chen J, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [47]

    Henkelman G, Uberuaga B P, Jnsson H 2000 J. Chem. Phys. 113 9901

    [48]

    Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloy. Compd. 400 56

    [49]

    Lucid A K, Keating P R, Allen J P, Watson G W 2016 J. Phys. Chem. C 120 23430

  • [1]

    Steele B 2000 Solid State Ionics 129 95

    [2]

    Maheshwari A, Wiemhfer H D 2015 Ceram. Int. 41 9122

    [3]

    Shi F 2010 Int. J. Hydrogen Energ. 35 10556

    [4]

    Baqu L, Caneiro A, Moreno M S, Serquis A 2008 Electrochem. Commun. 10 1905

    [5]

    Shi F, Song X P 2010 Int. J. Hydrogen Energ. 35 10620

    [6]

    Tao Z T, Ding H P, Chen X H, Hou G H, Zhang Q F, Tang M, Gu W 2016 J. Alloy. Compd. 663 750

    [7]

    Peng R R, Xia C R, Fu Q X, Meng G Y, Peng D K 2002 Mater. Lett. 56 1043

    [8]

    Shi F, Xiao H T 2013 Int. J. Hydrogen Energ. 38 2318

    [9]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [10]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L 2012 Chem. Chem. Phys. 14 1923

    [11]

    Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S, Tang W H 2009 J. Power Sources 194 830

    [12]

    Shi S Q, Tang Y H, Ouyang C Y, Cui L X, Xin X G, Li P J, Zhou W W, Zhang H, Lei M S, Chen L Q 2010 J. Phys. Chem. Solids 71 788

    [13]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [14]

    Li P J, Zhou W W, Tang Y H, Zhang H, Shi S Q 2010 Acta Phys. Sin. 59 3426 (in Chinese)[李沛娟, 周薇薇, 唐元昊, 张华, 施思齐 2010 物理学报 59 3426]

    [15]

    Bowman W J, Zhu J, Sharma R, Crozier P A 2015 Solid State Ionics 272 9

    [16]

    Zha S W, Xia C R, Meng G Y 2003 J. Power Sources 115 44

    [17]

    Nilsson J O, Vekilova O Y, Hellman O, Klarbring J, Simak S I, Skorodumova N V 2016 Phys. Rev. B 93 024102

    [18]

    Guo C, Wei S X, Zhou S N, Zhang T, Wang Z J, Ng S P, Lu X P, Wu C M L, Guo W Y 2017 ACS Appl. Mater. Inter. 9 26107

    [19]

    Tang Y H, Zhang H, Guan C M, Shen J Q, Shi S Q, Tang W H 2012 Sci. Sin.-Phys. Mech. Astron. 42 914 (in Chinese)[唐元昊, 张华, 管春梅, 沈静琴, 施思齐, 唐为华 2012 中国科学:物理学 力学 天文学 42 914]

    [20]

    Fu Z M, Sun Q, Ma D W, Zhang N, An Y P, Yang Z X 2017 Appl. Phys. Lett. 111 023903

    [21]

    Mogensen M, Sammes N M, Tompsett G A 2000 Solid State Ionics 129 63

    [22]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J S, Chen L Q 2010 Phys. Rev. B 82 125104

    [23]

    Xiong Y P, Yamaji K, Horita T, Sakai N, Yokokawa H 2004 J. Electrochem. Soc. 151 A407

    [24]

    Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z 2003 Solid State Ionics 160 109

    [25]

    Zhang D S, Qian Y L, Shi L Y, Mai H L, Gao R H, Zhang J P, Yu W J, Cao W G 2012 Catal. Commun. 26 164

    [26]

    Zhang T S, Hing P, Huang H T, Kilner J 2002 J. Mater. Sci. 37 997

    [27]

    Singh P, Hegde M 2010 Cryst. Growth Des. 10 2995

    [28]

    Nakayama M, Martin M 2009 Phys. Chem. Chem. Phys. 11 3241

    [29]

    Yahiro H, Eguchi K, Arai H 1989 Solid State Ionics 36 71

    [30]

    Ou D R, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J 2008 Phys. Rev. B 77 024108

    [31]

    Kashyap D, Patro P K, Lenka R K, Mahata T, Sinha P K 2014 Ceram. Int. 40 11869

    [32]

    Jaiswal N, Upadhyay S, Kumar D, Parkash O 2014 Int. J. Hydrogen Energ. 39 543

    [33]

    Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H 2000 Electrochemistry 68 455

    [34]

    Ji Y, Liu J, He T M, Wang J X, Su W H 2005 J. Alloy. Compd. 389 317

    [35]

    Banerjee S, Devi P S, Topwal D, Mandal S, Menon K 2007 Adv. Funct. Mater. 17 2847

    [36]

    Cioateră N, Parvulescu V, Rolle A, Vannier R 2009 Solid State Ionics 180 681

    [37]

    Kasse R M, Nino J C 2013 J. Alloy. Compd. 575 399

    [38]

    Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T 2001 Solid State Ionics 140 191

    [39]

    Burbano M, Nadin S, Marrocchelli D, Salanne M, Watson G W 2014 Phys. Chem. Chem. Phys. 16 8320

    [40]

    Andersson D A, Simak S I, Skorodumova N V, Abrikosov I A, Johansson B 2006 Proc. Natl. Acad. Sci. USA 103 3518

    [41]

    Alaydrus M, Sakaue M, Aspera S M, Wungu T D, Linh T P, Kasai H, Ishihara T, Mohri T 2013 J. Phys.:Condens. Mater. 25 225401

    [42]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [43]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]

    Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W 2005 Surf. Sci. 576 217

    [46]

    Feng J, Xiao B, Wan C, Qu Z, Huang Z, Chen J, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [47]

    Henkelman G, Uberuaga B P, Jnsson H 2000 J. Chem. Phys. 113 9901

    [48]

    Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloy. Compd. 400 56

    [49]

    Lucid A K, Keating P R, Allen J P, Watson G W 2016 J. Phys. Chem. C 120 23430

  • [1] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [2] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [3] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [4] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [5] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [6] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [7] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [8] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [9] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [10] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [11] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [12] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [14] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [15] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [16] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [17] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [18] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [19] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [20] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  662
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-26
  • 修回日期:  2018-02-02
  • 刊出日期:  2019-04-20

Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算

  • 1. 山东师范大学物理与电子科学学院, 济南 250358;
  • 2. 中国科学技术大学物理系, 合肥 230026
  • 通信作者: 陈美娜, mnchen@sdnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51602183)、山东省自然科学基金(批准号:ZR2014BP003)、中国博士后科学基金(批准号:2015M572074)和山东师范大学本科生科研基金项目(批准号:2017BKSKY35)资助的课题.

摘要: Sm3+,Sr2+共掺杂CeO2的离子电导率被证实可高达Sm3+掺杂CeO2离子电导率的近两倍,然而,共掺杂对CeO2电导率的作用机理尚不明确.本文利用第一性原理计算的密度泛函理论+U方法,对Sm3+和Sr2+共掺杂的CeO2进行了系统的研究,对比Sm3+或Sr2+单掺杂的CeO2体系,计算并分析了共掺杂体系的电子态密度、能带结构、氧空位形成能以及氧空位迁移能等微观属性.计算结果表明,Sm3+,Sr2+的共掺杂对CeO2基电解质性能的提高具有协同效应,二者的共掺杂不仅能协同抑制CeO2体系的电子电导率,还能在单掺杂CeO2的基础上进一步降低氧空位形成能,Sm3+的存在还有助于降低Sr2+对氧空位的俘获作用,而Sr2+的加入则能够在Sm3+掺杂CeO2的基础上进一步降低最低氧空位迁移能,爬坡式弹性能带方法计算表明共掺杂体系的氧空位迁移能最低可达0.314/0.295 eV,低于Sm3+掺杂CeO2的最低氧空位迁移能.研究揭示了Sm3+,Sr2+共掺杂对CeO2电导率的协同作用机理,对进一步研发其他高性能的共掺杂电解质材料具有重要的指导意义.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回