-
在单自旋跃迁临界动力学的基础上,利用动力学decimation重整化群技术,在考虑类磁型微扰的情况下,对动力学Gaussian自旋模型在具有扩展对称性的Sierpinski铺垫上的临界慢化行为进行了研究.结果表明,系统的动力学临界指数z仅与静态关联长度临界指数ν有关,而与分形维数Df无关.
-
关键词:
- 临界动力学 /
- 动力学实空间重整化群 /
- Sierpinski铺垫 /
- Gaussian自旋模型
Based on the single-spin transition critical dynamics, we investigate the critical slowing down of the Gaussian spin model on dilational symmetric Sierpinski gaskets. We calculate the dynamical critical exponent z using the dynamical decimation renormalization-group technique in the assumption of the magnetic-lile perturbation, and found that the dynamical critical exponent z of the system is only related to the static length-correlation exponent ν, but is foreign to the fractal dimenionality Df. The result of the universal conclusion z=1/ν has been verified again in this paper.-
Keywords:
- critical dynamics /
- dynamical real-space renormalization-group technique /
- Sierpinski gaskets /
- Gaussian spin system
计量
- 文章访问数: 7772
- PDF下载量: 523
- 被引次数: 0