搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BF自由基X1+和a3态光谱常数和分子常数研究

施德恒 牛相宏 孙金锋 朱遵略

引用本文:
Citation:

BF自由基X1+和a3态光谱常数和分子常数研究

施德恒, 牛相宏, 孙金锋, 朱遵略
cstr: 32037.14.aps.61.093105

Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical

Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue
cstr: 32037.14.aps.61.093105
PDF
导出引用
在线预览
  • 采用内收缩多参考组态相互作用方法和相关一致基aug-cc-pV6Z, 对BF自由基X1+和a3 态的势能曲线进行了研究. 计算是在0.0951.33 nm的核间距内进行的. 为获得更准确的结果, 计算中还考虑了Davidson修正、相对论修正及核价相关修正对势能曲线的影响. 相对论修正采用的方法是二阶DouglasKroll哈密顿近似, 修正计算是在cc-pV5Z基组水平上进行的. 核价相关修正使用的是cc-pCV5Z基组. 利用得到的势能曲线, 拟合出了各种修正下BF自由基X1+和a3 态的光谱常数De, Re, e, exe, eye, Be和e、并与实验结果进行了比较. 结果表明: 考虑Davidson修正、相对论修正和核价相关修正后得到的光谱常数最接近实验结果. 利用修正后的势能曲线, 通过求解径向振转Schrdinger方程, 找到了转动量子数J = 0时这两个电子态的全部振动态, 并计算了每一电子态前20个振动态的振动能级、惯性转动常数和离心畸变常数, 其值与已有的实验结果较为一致. 本文得到的光谱常数和分子常数达到了很高的精度, 能为进一步的光谱实验提供可靠的参考.
    The potential energy curves (PECs) of the X1+ and a3 electronic states of the BF radical are studied by employing the ab initio quantum chemical method. The calculations are performed by using the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with the basis set, aug-cc-pV6Z, for internuclear separations from 0.095 to 1.33 nm. The effects of the Davidson modification and core-valence correlation and relativistic corrections on the PECs are included. The way to consider the relativistic correction is to employ the second-order DouglasKroll Hamiltonian approximation. The relativistic correction is carried out at the level of cc-pV5Z basis set. And the core-valence correlation correction is made by using the cc-pCV5Z basis set. With the PECs obtained here, the spectroscopic parameters (De, Re, e, exe, eye, Be and e) are determined and compared with those reported in the literature. With the PECs obtained by the MRCI+Q/aug-cc-pV6Z+CV+DK calculations, the complete vibrational states are computed for each electronic state when J = 0. And the vibrational levels, the inertial rotation constants and the centrifugal distortion constants of the first 20 vibrational states of each electronic state are reported. On the whole, as expected, the spectroscopic parameters and molecular constants closest to the experimental data are determined by the MRCI+Q/ aug-cc-pV6Z+DK+CV calculations for the two electronic states.
    • 基金项目: 国家自然科学基金(批准号: 10874064和61077073), 河南省高校科技创新人才支持计划(批准号: 2008HASTI T008)和河南省教育厅自然科学研究计划(批准号: 2011C140002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 61077073), the Program for Science Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008 HASTIT008), and the Natural Science Foundation of Educational Bureau of Henan Province in China (Grant No. 2011C140002).
    [1]

    Chrétien M, Miescher E 1949 Nature 163 996

    [2]

    Onaka R 1957 J. Chem. Phys. 27 374

    [3]

    Barrow R F, Premaswarup D, Winternitz J, Zeeman P B 1958 Proc. Phys. Soc. 71 61

    [4]

    Lovas F J, Johnson D R 1971 J. Chem. Phys. 55 41

    [5]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (IV) (New York: Van Nostrand Reinhold Company)

    [6]

    Zahniser M S, Gersh M E 1981 J. Chem. Phys. 75 52

    [7]

    Nakanaga T, Takeo H, Kondo S, Matsumura C 1985 Chem. Phys. Lett. 114 88

    [8]

    Nesbet R K 1964 J. Chem. Phys. 40 3619

    [9]

    Huo W M 1965 J. Chem. Phys. 43 624

    [10]

    Nesbet R K 1964 J. Chem. Phys. 43 4403

    [11]

    Kurtz A H, Jordan K D 1981 Chem. Phys. Lett. 81 104

    [12]

    Botschwina P 1986 J. Mol. Spectrosc. 118 76

    [13]

    Peterson K A, Woods R C 1987 J. Chern. Phys. 87 4409

    [14]

    Wong M W, Nobes R H, Bouma W J, Radom L 1989 J. Chem. Phys. 91 2971

    [15]

    Li Z L, Su K H, Wang Y B, Wen Z Y 1998 J. Mol. Sci. 14 242 (in Chinese) [李兆龙, 苏克和, 王育彬, 文振翼 1998 分子科学学报 14 242]

    [16]

    Xie A D, Zhu Z H 2005 Chem. Acta Sin. 63 2126 (in Chinese) [谢安东, 朱正和 2005 化学学报 63 2126]

    [17]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [18]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [19]

    Mourik V 1999 Mol. Phys. 96 529

    [20]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [21]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [22]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [23]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [24]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [25]

    Shi D H, Zhang X N, Sun J F, Zhu Z L 2011 Mol. Phys. 109 1453

    [26]

    Shi D H, Li W T, Zhang X N, Sun J F, Liu Y F, Zhu Z L, Wang J M 2011 J. Mol. Spectrosc. 265 27

    [27]

    Shi D H, Liu H, Sun J F, Liu Y F, Zhu Z L 2010 J. Mol. Spectrosc. 264 55

    [28]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Mol. Phys. 109 1627

    [29]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105

    [30]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 物理学报 58 6873]

    [31]

    Bai F J, Yang C L, Qian Q, Zhang L 2009 Chin. Phys. B 18 549

    [32]

    Krogh J W, Lindh R, Malmqvist P -Å, Roos B O, Veryazov V and Widmark P -O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)

  • [1]

    Chrétien M, Miescher E 1949 Nature 163 996

    [2]

    Onaka R 1957 J. Chem. Phys. 27 374

    [3]

    Barrow R F, Premaswarup D, Winternitz J, Zeeman P B 1958 Proc. Phys. Soc. 71 61

    [4]

    Lovas F J, Johnson D R 1971 J. Chem. Phys. 55 41

    [5]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (IV) (New York: Van Nostrand Reinhold Company)

    [6]

    Zahniser M S, Gersh M E 1981 J. Chem. Phys. 75 52

    [7]

    Nakanaga T, Takeo H, Kondo S, Matsumura C 1985 Chem. Phys. Lett. 114 88

    [8]

    Nesbet R K 1964 J. Chem. Phys. 40 3619

    [9]

    Huo W M 1965 J. Chem. Phys. 43 624

    [10]

    Nesbet R K 1964 J. Chem. Phys. 43 4403

    [11]

    Kurtz A H, Jordan K D 1981 Chem. Phys. Lett. 81 104

    [12]

    Botschwina P 1986 J. Mol. Spectrosc. 118 76

    [13]

    Peterson K A, Woods R C 1987 J. Chern. Phys. 87 4409

    [14]

    Wong M W, Nobes R H, Bouma W J, Radom L 1989 J. Chem. Phys. 91 2971

    [15]

    Li Z L, Su K H, Wang Y B, Wen Z Y 1998 J. Mol. Sci. 14 242 (in Chinese) [李兆龙, 苏克和, 王育彬, 文振翼 1998 分子科学学报 14 242]

    [16]

    Xie A D, Zhu Z H 2005 Chem. Acta Sin. 63 2126 (in Chinese) [谢安东, 朱正和 2005 化学学报 63 2126]

    [17]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [18]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [19]

    Mourik V 1999 Mol. Phys. 96 529

    [20]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [21]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [22]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [23]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [24]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [25]

    Shi D H, Zhang X N, Sun J F, Zhu Z L 2011 Mol. Phys. 109 1453

    [26]

    Shi D H, Li W T, Zhang X N, Sun J F, Liu Y F, Zhu Z L, Wang J M 2011 J. Mol. Spectrosc. 265 27

    [27]

    Shi D H, Liu H, Sun J F, Liu Y F, Zhu Z L 2010 J. Mol. Spectrosc. 264 55

    [28]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Mol. Phys. 109 1627

    [29]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105

    [30]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 物理学报 58 6873]

    [31]

    Bai F J, Yang C L, Qian Q, Zhang L 2009 Chin. Phys. B 18 549

    [32]

    Krogh J W, Lindh R, Malmqvist P -Å, Roos B O, Veryazov V and Widmark P -O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)

计量
  • 文章访问数:  9606
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-12
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回