搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自洽GW方法的碳化硅准粒子能带结构计算

高尚鹏 祝桐

基于自洽GW方法的碳化硅准粒子能带结构计算

高尚鹏, 祝桐
PDF
导出引用
  • 在多体微扰理论的框架下, 分别采用G0W0方法和准粒子自洽GW方法计算3C-SiC和2H-SiC的准粒子能级. 由一个平均Monkhorst-Pack网格点上的准粒子能级和准粒子波函数出发, 结合最局域Wannier函数插值, 得到3C-SiC和2H-SiC的自洽准粒子能带结构. 3C-SiC的价带顶在点, 导带底在X点. DFT-LDA, G0W0和准粒子自洽GW给出的3C-SiC间接禁带宽度分别为 1.30 eV, 2.23 eV和2.88 eV. 2H-SiC价带顶在 点, 导带底在K点. 采用DFT-LDA, G0W0和准粒子自洽GW方法得到的间接禁带宽度分别为2.12 eV, 3.12 eV和 3.75 eV. 计算基于赝势方法, 对于3C-SiC和2H-SiC的准粒子自洽GW计算给出的禁带宽度均比实验值略大.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB606403)和 国家自然科学基金(批准号:10804018)资助的课题.
    [1]

    Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402

    [2]

    Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169

    [3]

    Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390

    [4]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [5]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [6]

    Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109

    [7]

    Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [8]

    Holm B, Barth U V 1998 Phys. Rev. B 57 2108

    [9]

    Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221

    [10]

    Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662

    [11]

    Ku W, Eguiluz A G 2002 Phys. Rev. Lett. 89 126401

    [12]

    Delaney K, Garcia-Conzalez P, Rubio A, Rinke P, Godby R W 2004 Phys. Rev. Lett. 93 249701

    [13]

    Faleev S V, Schilfgaarde M V, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [14]

    Bruneval F, Vast N, Reining L 2006 Phys. Rev. B 74 045102

    [15]

    Persson C, Lindefelt U 1996 Phys. Rev. B 54 10257

    [16]

    Park C H, Cheong B H, Lee K H, Chang K J 1994 Phys. Rev. B 49 4485

    [17]

    Yeh C Y, Wei S H, Zunger A 1994 Phys. Rev. B 50 2715

    [18]

    Jiang Z, Xu X, Wu H S, Zhang F, Jin Z 2002 Solid State Commun. 123 263

    [19]

    Jia R X, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 107105

    [20]

    Ching W Y, Xu Y N, Rulis P, Ouyang L 2006 Mater. Sci. Eng. A 422 147

    [21]

    Gao S P, Pickard C J, Payne M C, Zhu J, Yuan J 2008 Phys. Rev. B 77 115122

    [22]

    Wenzien B, Käckell P, Bechstedt F, Cappellini G 1995 Phys. Rev. B 52 10897

    [23]

    Backes W H, Bobbert P A, van Haeringen W 1995 Phys. Rev. B 51 4950

    [24]

    Ummels R T M, Bobbert P A, van Haeringen W 1998 Phys. Rev. B 58 6795

    [25]

    Schlegel H B 1982 J. Comp. Chem. 3 214

    [26]

    van Schilfgaarde M, Kotani T, Faleev S 2006 Phys. Rev. Lett. 96 226402

    [27]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Phys. Commun. 180 2582

    [28]

    Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Allan D C 2005 Zeit. Kristallogr. 220 558

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Thomson Learning Inc) p81

    [31]

    Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163

    [32]

    Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526

  • [1]

    Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402

    [2]

    Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169

    [3]

    Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390

    [4]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [5]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [6]

    Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109

    [7]

    Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [8]

    Holm B, Barth U V 1998 Phys. Rev. B 57 2108

    [9]

    Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221

    [10]

    Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662

    [11]

    Ku W, Eguiluz A G 2002 Phys. Rev. Lett. 89 126401

    [12]

    Delaney K, Garcia-Conzalez P, Rubio A, Rinke P, Godby R W 2004 Phys. Rev. Lett. 93 249701

    [13]

    Faleev S V, Schilfgaarde M V, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [14]

    Bruneval F, Vast N, Reining L 2006 Phys. Rev. B 74 045102

    [15]

    Persson C, Lindefelt U 1996 Phys. Rev. B 54 10257

    [16]

    Park C H, Cheong B H, Lee K H, Chang K J 1994 Phys. Rev. B 49 4485

    [17]

    Yeh C Y, Wei S H, Zunger A 1994 Phys. Rev. B 50 2715

    [18]

    Jiang Z, Xu X, Wu H S, Zhang F, Jin Z 2002 Solid State Commun. 123 263

    [19]

    Jia R X, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 107105

    [20]

    Ching W Y, Xu Y N, Rulis P, Ouyang L 2006 Mater. Sci. Eng. A 422 147

    [21]

    Gao S P, Pickard C J, Payne M C, Zhu J, Yuan J 2008 Phys. Rev. B 77 115122

    [22]

    Wenzien B, Käckell P, Bechstedt F, Cappellini G 1995 Phys. Rev. B 52 10897

    [23]

    Backes W H, Bobbert P A, van Haeringen W 1995 Phys. Rev. B 51 4950

    [24]

    Ummels R T M, Bobbert P A, van Haeringen W 1998 Phys. Rev. B 58 6795

    [25]

    Schlegel H B 1982 J. Comp. Chem. 3 214

    [26]

    van Schilfgaarde M, Kotani T, Faleev S 2006 Phys. Rev. Lett. 96 226402

    [27]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Phys. Commun. 180 2582

    [28]

    Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Allan D C 2005 Zeit. Kristallogr. 220 558

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Thomson Learning Inc) p81

    [31]

    Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163

    [32]

    Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4170
  • PDF下载量:  28995
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-21
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-07-05

基于自洽GW方法的碳化硅准粒子能带结构计算

  • 1. 复旦大学材料科学系, 上海 200433
    基金项目: 

    国家重点基础研究发展计划(批准号:2011CB606403)和 国家自然科学基金(批准号:10804018)资助的课题.

摘要: 在多体微扰理论的框架下, 分别采用G0W0方法和准粒子自洽GW方法计算3C-SiC和2H-SiC的准粒子能级. 由一个平均Monkhorst-Pack网格点上的准粒子能级和准粒子波函数出发, 结合最局域Wannier函数插值, 得到3C-SiC和2H-SiC的自洽准粒子能带结构. 3C-SiC的价带顶在点, 导带底在X点. DFT-LDA, G0W0和准粒子自洽GW给出的3C-SiC间接禁带宽度分别为 1.30 eV, 2.23 eV和2.88 eV. 2H-SiC价带顶在 点, 导带底在K点. 采用DFT-LDA, G0W0和准粒子自洽GW方法得到的间接禁带宽度分别为2.12 eV, 3.12 eV和 3.75 eV. 计算基于赝势方法, 对于3C-SiC和2H-SiC的准粒子自洽GW计算给出的禁带宽度均比实验值略大.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回