搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料的吸波体设计及其波导缝隙天线应用

刘涛 曹祥玉 高军 郑秋容 李文强

基于超材料的吸波体设计及其波导缝隙天线应用

刘涛, 曹祥玉, 高军, 郑秋容, 李文强
PDF
导出引用
导出核心图
  • 设计了一种基于超材料电磁特性的吸波体, 并将其应用于波导缝隙天线. 该吸波体是由两层金属及其中间的有耗介质组成, 上层金属是由刻蚀交叉缝隙的贴片形成的电谐振器, 下层金属不刻蚀, 作为整个金属地板. 通过优化结构参数, 得到了一种极化不敏感、宽入射角的超薄吸波体, 吸波率达到99.1%, 厚度只有约0.01λ. 将该吸波体应用与波导缝隙天线, 在5.48-5.7 GHz工作频段内, 天线雷达散射截面减缩都在3 dB以上, 在鼻锥方向的-25°-+25°范围的角度上, 天线雷达散射截面减缩均在5 dB以上, 雷达散射截面减缩最大超过12 dB, 而天线前向增益仅降低了0.53 dB. 实验结果与仿真结果符合得较好, 证实了该吸波体具有好的天线雷达散射截面减缩效果, 可以应用于天线目标的隐身.
    • 基金项目: 中国博士后科学基金(批准号: 20100481497);陕西省自然科学基金研究重点项目(批准号: 2010JZ010)和陕西省自然科学基础研究(批准号: SJ08-ZT06)资助的课题.
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [3]

    Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101

    [4]

    Luukkonen O, Filippo C, Agostino M, Sergei A T 2009 IEEE Trans. Antennas Propagat. 57 3119

    [5]

    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Progress in Electromagnetics Research 10 231

    [6]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [7]

    Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 物理学报 60 107801]

    [8]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945

    [9]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [10]

    Hu T, Bingham C M, Pilon D 2010 J. Phys. D: Appl. Phys. 43 225102

    [11]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Progress in Electromagnetics Research 108 37

    [12]

    Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [13]

    Ye Y Q, Jin Y, He S L 2010 Opt. Soc. Am. B 27 498

    [14]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [15]

    Lee J, Lim S 2011 Electron. Lett. 47 8

    [16]

    Gu S, Barrett J P, Hand T H, Popa B-I, Cummer S A 2010 J. Appl. Phys. 108 064913

    [17]

    Fan J, Cai G Y 2010 Acta Phys. Sin. 59 6084 (in Chinese) [樊京, 蔡广宇 2010 物理学报 59 6084]

    [18]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [19]

    Gu C, Qu S B, Pei Z B, Xu Z, Bai P, Peng W D, Lin B Q 2011 Acta Phys. Sin. 60 087801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801]

    [20]

    Li Y Q, Fu Y Q, Yuan N C 2009 Microwave and Optical Technology Letters 51 1175

    [21]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [22]

    Yang Y, Li L, Liang C H 2011 Proceedings of Antenna Annual Conference of China, Nanjing, Oct. 18-21, 2011 p812 (in Chinese) [杨阳, 李龙, 梁昌洪 2011 全国天线年会 南京 p812]

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [3]

    Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101

    [4]

    Luukkonen O, Filippo C, Agostino M, Sergei A T 2009 IEEE Trans. Antennas Propagat. 57 3119

    [5]

    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Progress in Electromagnetics Research 10 231

    [6]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [7]

    Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 物理学报 60 107801]

    [8]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945

    [9]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [10]

    Hu T, Bingham C M, Pilon D 2010 J. Phys. D: Appl. Phys. 43 225102

    [11]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Progress in Electromagnetics Research 108 37

    [12]

    Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [13]

    Ye Y Q, Jin Y, He S L 2010 Opt. Soc. Am. B 27 498

    [14]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [15]

    Lee J, Lim S 2011 Electron. Lett. 47 8

    [16]

    Gu S, Barrett J P, Hand T H, Popa B-I, Cummer S A 2010 J. Appl. Phys. 108 064913

    [17]

    Fan J, Cai G Y 2010 Acta Phys. Sin. 59 6084 (in Chinese) [樊京, 蔡广宇 2010 物理学报 59 6084]

    [18]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [19]

    Gu C, Qu S B, Pei Z B, Xu Z, Bai P, Peng W D, Lin B Q 2011 Acta Phys. Sin. 60 087801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801]

    [20]

    Li Y Q, Fu Y Q, Yuan N C 2009 Microwave and Optical Technology Letters 51 1175

    [21]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [22]

    Yang Y, Li L, Liang C H 2011 Proceedings of Antenna Annual Conference of China, Nanjing, Oct. 18-21, 2011 p812 (in Chinese) [杨阳, 李龙, 梁昌洪 2011 全国天线年会 南京 p812]

  • [1] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [2] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [3] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [4] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计. 物理学报, 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [5] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体 . 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [6] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [7] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [8] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料. 物理学报, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [9] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [10] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [11] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [12] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [13] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [14] 张光甫, 袁乃昌, 刘少斌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [15] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [16] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [17] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [18] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [19] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [20] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1914
  • PDF下载量:  2646
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-01
  • 修回日期:  2012-03-05
  • 刊出日期:  2012-09-20

基于超材料的吸波体设计及其波导缝隙天线应用

  • 1. 空军工程大学电讯工程学院, 西安 710077
    基金项目: 

    中国博士后科学基金(批准号: 20100481497)

    陕西省自然科学基金研究重点项目(批准号: 2010JZ010)和陕西省自然科学基础研究(批准号: SJ08-ZT06)资助的课题.

摘要: 设计了一种基于超材料电磁特性的吸波体, 并将其应用于波导缝隙天线. 该吸波体是由两层金属及其中间的有耗介质组成, 上层金属是由刻蚀交叉缝隙的贴片形成的电谐振器, 下层金属不刻蚀, 作为整个金属地板. 通过优化结构参数, 得到了一种极化不敏感、宽入射角的超薄吸波体, 吸波率达到99.1%, 厚度只有约0.01λ. 将该吸波体应用与波导缝隙天线, 在5.48-5.7 GHz工作频段内, 天线雷达散射截面减缩都在3 dB以上, 在鼻锥方向的-25°-+25°范围的角度上, 天线雷达散射截面减缩均在5 dB以上, 雷达散射截面减缩最大超过12 dB, 而天线前向增益仅降低了0.53 dB. 实验结果与仿真结果符合得较好, 证实了该吸波体具有好的天线雷达散射截面减缩效果, 可以应用于天线目标的隐身.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回