搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Michelson干涉仪的高灵敏度光纤高温探针传感器

杨珅 荣强周 孙浩 张菁 梁磊 徐琴芳 詹苏昌 杜彦英 冯定一 乔学光 忽满利

基于Michelson干涉仪的高灵敏度光纤高温探针传感器

杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利
PDF
导出引用
导出核心图
  • 提出了一种简单的高灵敏度的光纤高温探针传感器, 该传感器由一小段多模光纤和一端镀有银膜的单模光纤熔接而成. 由于单模光纤和多模光纤的纤芯直径不同, 当光波从多模光纤传输至多模光纤和单模光纤的熔接端面时, 一部分纤芯光耦合进包层, 因为单模光纤纤芯的折射率和包层的折射率不同, 不同模式的光经过银膜反射后在多模光纤内重新耦合进单模光纤, 最终形成干涉.随着外界温度的升高, 干涉谱峰值会向长波方向漂移. 实验结果证明这种传感器在470 ℃–600 ℃范围内具有很好的稳定性, 线性度达99.7%, 灵敏度为120 pm/℃, 可作为远距离反射型探针温度传感器, 在石油探测和油气田开发等领域有着广泛的应用前景.
    • 基金项目: 国家自然科学基金(批准号:61077006)和陕西省自然科学基金(批准号:FS11131)资助的课题.
    [1]

    Koo K P, Kersey A D 1995 Lightwave Technol. 13 1243

    [2]

    Ball G A, Morey W W, Cheo P K 1993 IEEE Photon. Technol. Lett. 5 267

    [3]

    Qiao X G, Jia Z A, Fu H W, Li M 2004 Acta Phys. Sin. 53 494 (in Chinese) [乔学光, 贾振安, 傅海威, 李明2004物理学报 53 494]

    [4]

    Bhatia V, Vengsarkar A M 1996 Opt. Lett. 21 692

    [5]

    Wang Y P, Member, Rao Y J 2005 IEEE Sens. J. 5 839

    [6]

    Wang Y P, Rao Y J, Ran Z L, Zhu T 2003 Acta Phys. Sin. 52 1432 (in Chinese) [王义平, 饶云江, 冉曾令, 朱涛2003物理学报 52 1432]

    [7]

    Liu Y G, Liu B, Feng X H, Zhang W G, Zhou G, Yuan S Z, Kai G Y, Dong X Y 2005 Appl. Opt. 44 2382

    [8]

    Dong B, Zhou D P, Wei L 2010 J. Lightwave Technol. 28 1011

    [9]

    Li W, Hao X J, Zhou H C 2010 Elec-Opt. Technol. Appl. 25 54 (in Chinese) [李伟, 郝晓剑, 周汉昌 2010 光电技术应用 25 54]

    [10]

    Sui C H, Cai P G, Xu X J, Chen N B, Wei G Y, Zhou H 2009 Acta Phys. Sin. 58 2792 (in Chinese) [隋成华, 蔡萍根, 许晓军, 陈乃波, 魏高尧, 周红2009 物理学报 58 2792]

    [11]

    Rao Y J, Zhu T, Yang X C 2007 Opt. Lett. 32 2262

    [12]

    Zhang J, Sun H, Rong Q Z, Ma Y, Liang L, Xu Q F, Zhao P, Feng Z Y, Hu M L, Qiao X G 2012 Chin. Opt. Lett. 10 070607

    [13]

    Lü C G, Cui Y P, Wang Z Y, Yun B F 2003 Acta Phys. Sin. 53 145 (in Chinese) [吕昌贵, 崔一平, 王著元, 恽斌峰 2003 物理学报 53 145]

    [14]

    Li Y B, Wang X L, Zhang C 2006 Appl. Phys. Lett. 89 091119

    [15]

    Liu Y, Wei L 2007 Appl. Opt. 46 2516

    [16]

    Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y 2008 Opt. Express 16 11369

    [17]

    Tian Z B, Yam S S H, Loock H P 2008 Opt. Lett. 33 1105

    [18]

    Liu Y, Liu B, Feng X, Zhang W, Zhou G, Yuan S, Kai G, Dong X 2005 Appl. Opt. 44 2382

    [19]

    Zhang Z J, Shi W K, Gao K, Fang Z J 2004 Opt. Technol. 30 525 (in Chinese) [张自嘉, 施文康, 高侃, 方祖捷2004光学技术 30 525]

  • [1]

    Koo K P, Kersey A D 1995 Lightwave Technol. 13 1243

    [2]

    Ball G A, Morey W W, Cheo P K 1993 IEEE Photon. Technol. Lett. 5 267

    [3]

    Qiao X G, Jia Z A, Fu H W, Li M 2004 Acta Phys. Sin. 53 494 (in Chinese) [乔学光, 贾振安, 傅海威, 李明2004物理学报 53 494]

    [4]

    Bhatia V, Vengsarkar A M 1996 Opt. Lett. 21 692

    [5]

    Wang Y P, Member, Rao Y J 2005 IEEE Sens. J. 5 839

    [6]

    Wang Y P, Rao Y J, Ran Z L, Zhu T 2003 Acta Phys. Sin. 52 1432 (in Chinese) [王义平, 饶云江, 冉曾令, 朱涛2003物理学报 52 1432]

    [7]

    Liu Y G, Liu B, Feng X H, Zhang W G, Zhou G, Yuan S Z, Kai G Y, Dong X Y 2005 Appl. Opt. 44 2382

    [8]

    Dong B, Zhou D P, Wei L 2010 J. Lightwave Technol. 28 1011

    [9]

    Li W, Hao X J, Zhou H C 2010 Elec-Opt. Technol. Appl. 25 54 (in Chinese) [李伟, 郝晓剑, 周汉昌 2010 光电技术应用 25 54]

    [10]

    Sui C H, Cai P G, Xu X J, Chen N B, Wei G Y, Zhou H 2009 Acta Phys. Sin. 58 2792 (in Chinese) [隋成华, 蔡萍根, 许晓军, 陈乃波, 魏高尧, 周红2009 物理学报 58 2792]

    [11]

    Rao Y J, Zhu T, Yang X C 2007 Opt. Lett. 32 2262

    [12]

    Zhang J, Sun H, Rong Q Z, Ma Y, Liang L, Xu Q F, Zhao P, Feng Z Y, Hu M L, Qiao X G 2012 Chin. Opt. Lett. 10 070607

    [13]

    Lü C G, Cui Y P, Wang Z Y, Yun B F 2003 Acta Phys. Sin. 53 145 (in Chinese) [吕昌贵, 崔一平, 王著元, 恽斌峰 2003 物理学报 53 145]

    [14]

    Li Y B, Wang X L, Zhang C 2006 Appl. Phys. Lett. 89 091119

    [15]

    Liu Y, Wei L 2007 Appl. Opt. 46 2516

    [16]

    Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y 2008 Opt. Express 16 11369

    [17]

    Tian Z B, Yam S S H, Loock H P 2008 Opt. Lett. 33 1105

    [18]

    Liu Y, Liu B, Feng X, Zhang W, Zhou G, Yuan S, Kai G, Dong X 2005 Appl. Opt. 44 2382

    [19]

    Zhang Z J, Shi W K, Gao K, Fang Z J 2004 Opt. Technol. 30 525 (in Chinese) [张自嘉, 施文康, 高侃, 方祖捷2004光学技术 30 525]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1964
  • PDF下载量:  920
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-27
  • 修回日期:  2012-11-09
  • 刊出日期:  2013-04-05

基于Michelson干涉仪的高灵敏度光纤高温探针传感器

  • 1. 西北大学物理学系, 西安 710069
    基金项目: 

    国家自然科学基金(批准号:61077006)和陕西省自然科学基金(批准号:FS11131)资助的课题.

摘要: 提出了一种简单的高灵敏度的光纤高温探针传感器, 该传感器由一小段多模光纤和一端镀有银膜的单模光纤熔接而成. 由于单模光纤和多模光纤的纤芯直径不同, 当光波从多模光纤传输至多模光纤和单模光纤的熔接端面时, 一部分纤芯光耦合进包层, 因为单模光纤纤芯的折射率和包层的折射率不同, 不同模式的光经过银膜反射后在多模光纤内重新耦合进单模光纤, 最终形成干涉.随着外界温度的升高, 干涉谱峰值会向长波方向漂移. 实验结果证明这种传感器在470 ℃–600 ℃范围内具有很好的稳定性, 线性度达99.7%, 灵敏度为120 pm/℃, 可作为远距离反射型探针温度传感器, 在石油探测和油气田开发等领域有着广泛的应用前景.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回