搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Sn-Cu钎料的黏滞性与润湿行为研究

赵宁 黄明亮 马海涛 潘学民 刘晓英

液态Sn-Cu钎料的黏滞性与润湿行为研究

赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英
PDF
导出引用
导出核心图
  • 金属熔体的黏度和表面张力都是与液态结构相关的敏感物理性质, 且存在一定的相互关系. 对于微电子封装材料而言, 黏度和表面张力均是影响其工艺性能的重要参量. 本文利用回转振动式高温熔体黏度仪测量了Sn-xCu (x = 0.7, 1.5, 2)钎料熔体在不同温度下的黏度值, 发现在一定温度范围内钎料熔体的黏度值存在突变, 可划分为低温区和高温区. 在各温区内, 黏温关系很好地符合Arrhenius方程, 在此基础上讨论了液态钎料的结构特征和演变规律. 同时, 利用黏度值计算了液态Sn-xCu钎料在相应温度下的表面张力, 并通过Sn-xCu钎料在Cu基板上的润湿铺展实验对计算结果进行验证. 结果显示, 润湿角和扩展率的测试结果与表面张力的计算结果具有很好的一致性, 表明通过熔体黏度值来计算锡基二元无铅钎料合金表面张力并评估其润湿性能的方法是可行的.
    • 基金项目: 国家自然科学基金(批准号:51171036)、高等学校博士学科点专项科研基金(批准号:20120041120038)和中央高校基本科研业务费(批准号:DUT11RC(3)56)资助的课题.
    [1]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 杨中喜, 王瑞, 吉蕾蕾 2006 物理学报 55 1320]

    [2]

    Hou J X, Guo H X, Zhan C W, Tian X L, Chen X C 2006 Mater. Lett. 60 2038

    [3]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 056601]

    [4]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metall. Sin. 36 1134 (in Chinese) [孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [5]

    Wang J L 2002 Microelectron. Reliabbility 42 293

    [6]

    Sun Y Y, Zhang Z Q, Wong C P 2005 Macromol. Mater. Eng. 290 1204

    [7]

    Wei X Q, Zhou L, Huang H Z, Xiao H B 2005 Mater. Lett. 59 1889

    [8]

    Egry I, Lohöfer G, Sauerland S 1993 J. Non-Cryst. Solids 156-158 830

    [9]

    Egry I 1993 Scripta Metall. Mater. 28 1273

    [10]

    Zhao N, Pan X M, Ma H T, Wang L 2008 Acta Metall. Sin. 44 467 (in Chinese) [赵宁, 潘学民, 马海涛, 王来 2008 金属学报 44 467]

    [11]

    Zhao N, Pan X M, Ma H T, Dong C, Guo S H, Lu W, Wang L 2008 J. Phys. Confer. Ser. 98 U141

    [12]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 046601]

    [13]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Physica B 387 1

    [14]

    Nishimura S, Matsumoto S, Terashima K 2002 J. Cryst. Growth 237-239 1667

    [15]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 J. At. Mol. Phys. 21 663 (in Chinese) [杨中喜, 耿浩然, 陶珍东, 孙春静 2004 原子分子物理学报 21 663]

    [16]

    Zhao N 2008 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese) [赵宁 2008 博士学位论文 (大连:大连理工大学)]

    [17]

    Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F 2001 Mater. Sci. Technol. 9 383 (in Chinese) [腾新营, 闽光辉, 刘含莲, 石志强, 王焕荣, 叶以富 2001 材料科学与工艺 9 383]

    [18]

    Iida T, Roderick I L 1993 The Physical Properties of Liquid Metals (Oxford:Clarendon Press)

    [19]

    Abtew M, Selvaduray G 2000 Mater. Sci. Eng. R 27 95

  • [1]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 杨中喜, 王瑞, 吉蕾蕾 2006 物理学报 55 1320]

    [2]

    Hou J X, Guo H X, Zhan C W, Tian X L, Chen X C 2006 Mater. Lett. 60 2038

    [3]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 056601]

    [4]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metall. Sin. 36 1134 (in Chinese) [孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [5]

    Wang J L 2002 Microelectron. Reliabbility 42 293

    [6]

    Sun Y Y, Zhang Z Q, Wong C P 2005 Macromol. Mater. Eng. 290 1204

    [7]

    Wei X Q, Zhou L, Huang H Z, Xiao H B 2005 Mater. Lett. 59 1889

    [8]

    Egry I, Lohöfer G, Sauerland S 1993 J. Non-Cryst. Solids 156-158 830

    [9]

    Egry I 1993 Scripta Metall. Mater. 28 1273

    [10]

    Zhao N, Pan X M, Ma H T, Wang L 2008 Acta Metall. Sin. 44 467 (in Chinese) [赵宁, 潘学民, 马海涛, 王来 2008 金属学报 44 467]

    [11]

    Zhao N, Pan X M, Ma H T, Dong C, Guo S H, Lu W, Wang L 2008 J. Phys. Confer. Ser. 98 U141

    [12]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 046601]

    [13]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Physica B 387 1

    [14]

    Nishimura S, Matsumoto S, Terashima K 2002 J. Cryst. Growth 237-239 1667

    [15]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 J. At. Mol. Phys. 21 663 (in Chinese) [杨中喜, 耿浩然, 陶珍东, 孙春静 2004 原子分子物理学报 21 663]

    [16]

    Zhao N 2008 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese) [赵宁 2008 博士学位论文 (大连:大连理工大学)]

    [17]

    Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F 2001 Mater. Sci. Technol. 9 383 (in Chinese) [腾新营, 闽光辉, 刘含莲, 石志强, 王焕荣, 叶以富 2001 材料科学与工艺 9 383]

    [18]

    Iida T, Roderick I L 1993 The Physical Properties of Liquid Metals (Oxford:Clarendon Press)

    [19]

    Abtew M, Selvaduray G 2000 Mater. Sci. Eng. R 27 95

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1994
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-16
  • 修回日期:  2012-12-24
  • 刊出日期:  2013-04-05

液态Sn-Cu钎料的黏滞性与润湿行为研究

  • 1. 大连理工大学, 辽宁省先进连接技术重点实验室, 大连 116024;
  • 2. 大连理工大学材料科学与工程学院, 大连 116024
    基金项目: 

    国家自然科学基金(批准号:51171036)、高等学校博士学科点专项科研基金(批准号:20120041120038)和中央高校基本科研业务费(批准号:DUT11RC(3)56)资助的课题.

摘要: 金属熔体的黏度和表面张力都是与液态结构相关的敏感物理性质, 且存在一定的相互关系. 对于微电子封装材料而言, 黏度和表面张力均是影响其工艺性能的重要参量. 本文利用回转振动式高温熔体黏度仪测量了Sn-xCu (x = 0.7, 1.5, 2)钎料熔体在不同温度下的黏度值, 发现在一定温度范围内钎料熔体的黏度值存在突变, 可划分为低温区和高温区. 在各温区内, 黏温关系很好地符合Arrhenius方程, 在此基础上讨论了液态钎料的结构特征和演变规律. 同时, 利用黏度值计算了液态Sn-xCu钎料在相应温度下的表面张力, 并通过Sn-xCu钎料在Cu基板上的润湿铺展实验对计算结果进行验证. 结果显示, 润湿角和扩展率的测试结果与表面张力的计算结果具有很好的一致性, 表明通过熔体黏度值来计算锡基二元无铅钎料合金表面张力并评估其润湿性能的方法是可行的.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回