搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提高激光抽运铯原子磁力仪灵敏度的研究

李楠 黄凯凯 陆璇辉

引用本文:
Citation:

提高激光抽运铯原子磁力仪灵敏度的研究

李楠, 黄凯凯, 陆璇辉

Study on the sensitivity of laser-pumped cesium atomic magnetometer

Li Nan, Huang Kai-Kai, Lu Xuan-Hui
PDF
导出引用
  • 本文报道了一种基于激光抽运射频共振的铯原子磁力仪. 通过圆偏振光将铯原子抽运到暗态, 实现偏极化. 外磁场存在时, 原子磁矩将以拉莫尔频率绕外磁场进动. 在共振射频磁场的作用下, 原子被去极化而重新吸收光子. 通过探测出射光光谱可以测得拉莫尔频率进而得到外磁场的信息. 本文通过运用自制的894 nm 外腔半导体激光器, 建立了激光稳频装置和低噪声磁场测量环境, 实现了一种基于铯原子激光抽运射频共振的磁力仪. 通过磁力仪参数优化以及闭环测量, 磁力仪测量的外磁场达到了19 fT/Hz1/2的极限灵敏度和1.8 pT/Hz1/2的本征灵敏度, 空间分辨率小于2 cm.
    A cesium atomic magnetometer based on laser-pumped rf resonance has been investigated and demonstrated experimentally. Atoms are polarized and pumped to dark states by circularly polarized light. When there exists a magnetic field, the corresponding magnetization will be precessing around the magnetic field at Larmor frequency. By means of adding a resonant rf magnetic field, the atoms will be depolarized and absorb photons again. By detecting the spectrum of the transmitted light, one can obtain the information about the external magnetic field. We build an 894nm external cavity diode laser with a frequency stabilization device, and a low noise magnetic field measurement environment. After the optimization of the magnetometer parameter and closed-loop measurement, an ultimate sensitivity of 19 fT/Hz1/2 and an intrinsic sensitivity of 1.8 pT/Hz1/2 have been achieved with the spatial resolution smaller than 2 cm.
    • 基金项目: 国家自然科学基金(批准号:10874012, 10974177)和国家国际科技合作项目(批准号: 2010DFA04690)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874012, 10974177), and the International Collaboration of Science and Technology of China (Grant No. 2010DFA04690).
    [1]

    Bison G, Wynands R, Weis A 2003 Appl. Phys. B 76 325

    [2]

    Carlos Go'mez, Roberto Hornero, Daniel Aba'solo, Alberto Ferna'ndez, Javier Escudero 2007 Computer Methods and Programs in Biomedicine 87 239

    [3]

    Karsten Sternickel, Alex Braginski 2003 Supercond. Sci. Technol 19 160

    [4]

    Groeger S, Bison G 2006 Sensors and Actuators A: Phys. 129 1

    [5]

    Xu S 2008 Phys. Rev. A 78 13404

    [6]

    Sarma B S P, Verma B K, Satyanarayana S V 1999 Geophysics 64 1735

    [7]

    Mende S B, Harris S E, Frey H U, Angelopoulos V, Russell C T, Donovan E, Jackel B, Greffen M, Peticolas L M 2008 Space Sci. Rev. 141 357

    [8]

    Russell C T, Chi P J, Dearborn D J, Ge Y S, Kuo-Tiong B, Means J D, Pierce D R, Rowe K M, Snare R C 2008 Space Sci. Rev. 141 389

    [9]

    Turkakin H, Marchand R, Kale Z C 2008 Journal of Geophysical Research 113 1

    [10]

    Carreon H 2008 Wear 265 255

    [11]

    Zivotsky O, Postava K, Kraus L, J iraskova Y, Juraszek J, Teillet J, Barcova K, Svec P S, Janickovic D, Pistora J 2008 Journal of Magnetism and Magnetic Materials 320 1535

    [12]

    Bonavolonta C, Valentino A, Peluso G, Barone A 2007 Applied Superconductivity 17 772

    [13]

    Kuroda M, Yamanaka S 2005 NDT & E International 38 53

    [14]

    Tralshawala N, Claycomb J R, Miller J H 1997 Appl. Phys. Lett. 71 2874

    [15]

    Huang K K 2012 Chin. Phys. Lett. 29 100701

    [16]

    Kanorsky S, Lang S, LÄucke S, Ross S, HÄansch T, Weis A 1996 Phys. Rev. A 54 1010

    [17]

    Huang K K, Li N, Lu X H 2011 Infrared and Laser Engineering 11 2192 (in Chinese) [黄凯凯, 李楠, 陆璇辉 2011 红外与激光工程 11 2129]

    [18]

    Corwin K L, Lu T Z, Hand C F, Epstain R J, Wieman C E 1998 Appl. Optics 37 3295

    [19]

    Liu K, Zhang S Y, Gu W 2012 Modern Electronics Technique 35 7 (in Chinese) [刘坤, 张松勇, 顾伟 2012 现代电子技术 35 7]

    [20]

    Rife D R, Boorstyn R T 1974 IEEE Transactions on Information Theory 20 591

  • [1]

    Bison G, Wynands R, Weis A 2003 Appl. Phys. B 76 325

    [2]

    Carlos Go'mez, Roberto Hornero, Daniel Aba'solo, Alberto Ferna'ndez, Javier Escudero 2007 Computer Methods and Programs in Biomedicine 87 239

    [3]

    Karsten Sternickel, Alex Braginski 2003 Supercond. Sci. Technol 19 160

    [4]

    Groeger S, Bison G 2006 Sensors and Actuators A: Phys. 129 1

    [5]

    Xu S 2008 Phys. Rev. A 78 13404

    [6]

    Sarma B S P, Verma B K, Satyanarayana S V 1999 Geophysics 64 1735

    [7]

    Mende S B, Harris S E, Frey H U, Angelopoulos V, Russell C T, Donovan E, Jackel B, Greffen M, Peticolas L M 2008 Space Sci. Rev. 141 357

    [8]

    Russell C T, Chi P J, Dearborn D J, Ge Y S, Kuo-Tiong B, Means J D, Pierce D R, Rowe K M, Snare R C 2008 Space Sci. Rev. 141 389

    [9]

    Turkakin H, Marchand R, Kale Z C 2008 Journal of Geophysical Research 113 1

    [10]

    Carreon H 2008 Wear 265 255

    [11]

    Zivotsky O, Postava K, Kraus L, J iraskova Y, Juraszek J, Teillet J, Barcova K, Svec P S, Janickovic D, Pistora J 2008 Journal of Magnetism and Magnetic Materials 320 1535

    [12]

    Bonavolonta C, Valentino A, Peluso G, Barone A 2007 Applied Superconductivity 17 772

    [13]

    Kuroda M, Yamanaka S 2005 NDT & E International 38 53

    [14]

    Tralshawala N, Claycomb J R, Miller J H 1997 Appl. Phys. Lett. 71 2874

    [15]

    Huang K K 2012 Chin. Phys. Lett. 29 100701

    [16]

    Kanorsky S, Lang S, LÄucke S, Ross S, HÄansch T, Weis A 1996 Phys. Rev. A 54 1010

    [17]

    Huang K K, Li N, Lu X H 2011 Infrared and Laser Engineering 11 2192 (in Chinese) [黄凯凯, 李楠, 陆璇辉 2011 红外与激光工程 11 2129]

    [18]

    Corwin K L, Lu T Z, Hand C F, Epstain R J, Wieman C E 1998 Appl. Optics 37 3295

    [19]

    Liu K, Zhang S Y, Gu W 2012 Modern Electronics Technique 35 7 (in Chinese) [刘坤, 张松勇, 顾伟 2012 现代电子技术 35 7]

    [20]

    Rife D R, Boorstyn R T 1974 IEEE Transactions on Information Theory 20 591

  • [1] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力. 物理学报, 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [2] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [3] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211122
    [4] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构. 物理学报, 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [5] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [6] 张军海, 王平稳, 韩煜, 康崇, 孙伟民. 共振线极化光实现原子矢量磁力仪的理论研究. 物理学报, 2018, 67(6): 060701. doi: 10.7498/aps.67.20172108
    [7] 李明, 姚宁, 冯志波, 韩红培, 赵正印. 外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响. 物理学报, 2018, 67(5): 057101. doi: 10.7498/aps.67.20172213
    [8] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究. 物理学报, 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [9] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性. 物理学报, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [10] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究. 物理学报, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [11] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [12] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究. 物理学报, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [13] 惠战强, 张建国. 基于光子晶体光纤中多抽运四波混频效应的新型光层组播技术. 物理学报, 2011, 60(7): 074220. doi: 10.7498/aps.60.074220
    [14] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [15] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量. 物理学报, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [16] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究. 物理学报, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [17] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [18] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [19] 胡响明. 光抽运无反转激光. 物理学报, 1993, 42(12): 1928-1932. doi: 10.7498/aps.42.1928
    [20] 刘淑琴, 董太乾. 光抽运实验中的拍频现象. 物理学报, 1984, 33(12): 1673-1679. doi: 10.7498/aps.33.1673
计量
  • 文章访问数:  5700
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11
  • 修回日期:  2013-03-21
  • 刊出日期:  2013-07-05

/

返回文章
返回