搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化

杨景辉 张楠 朱晓农

利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化

杨景辉, 张楠, 朱晓农
PDF
导出引用
导出核心图
  • 本文提出了一种基于纹影成像装置的新型相位检测方法, 并使用该方法对飞秒激光烧蚀铝靶产生的喷射物的超快相位演化过程进行了实验研究. 与传统的纹影法不同, 本文的相位检测方法使用相干光作为成像照明光, 利用未透过样品的背景光作为参考光, 借助透过样品后在纹影装置刀口处衍射的照明光与背景照明光的干涉, 检测样品的相位; 其最显著的优点是能够清晰反映被测样品mπ或2mπ (m为整数) 的相位改变. 利用该方法, 结合抽运-探测技术, 研究了激光流量为5.4 J/cm2的50 fs脉冲激光烧蚀铝靶产生的喷射物的超快相位演化. 实验发现, 烧蚀过程中形成的喷射物可分为三个相位不同的区域, 分别对应等离子体态的喷射物、后续的垂直靶面喷射的物质和冲击波. 其中, 等离子体态的喷射物在0–9.0 ns的时间延迟内, 由于膨胀和电子复合作用, 相位变化超过π; 而后续的垂直靶面的喷射物在此时间内的相位变化没有超过π.
    • 基金项目: 国家自然科学基金(批准号: 11004111和61137001);天津市自然科学基金(批准号: 10JCZDGX35100);高等学校博士学科点专项科研基金(批准号: 20100031120034)和中央高校基本科研业务费专项资金资助的课题.
    [1]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [2]

    Rodriguez G, Valenzuela A R, Yellampalle B, Schmitt M J, Kim K Y 2008 J. Opt. Soc. Am. B 25 1988

    [3]

    Yuan C J, Zhai H C, Wang X L, Wu L 2007 Acta Phys. Sin. 56 218 (in Chinese) [袁操今, 翟宏琛, 王晓雷, 吴兰 2007 物理学报 56 218]

    [4]

    Chigarev N, Tournat V, Gusev V 2012 Appl. Phys. Lett. 100 144102

    [5]

    Hu H F, Wang X L, Li Z L, Zhang N, Zhai H C 2009 Acta Phys. Sin. 58 7662 (in Chinese) [胡浩峰, 王晓雷, 李智磊, 张楠, 翟宏琛 2009 物理学报 58 7662]

    [6]

    Berry S A, Gates J C, Brocklesby W S 2011 Appl. Phys. Lett. 99 141107

    [7]

    Xu X F, Cai L Z, Wang Y R, Li D L 2010 Chin. Phys. Lett. 27 024215

    [8]

    Börner M, Fils J, Frank A, Blažević A, Hessling T, Pelka A, Schaumann G, Schökel A, Schumacher D, Basko M M, Maruhn J, Tauschwitz A, Roth M 2012 Rev. Sci. Inst. 83 043501

    [9]

    Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla F J 2011 Opt. Lett. 36 4305

    [10]

    Popescu G, Deflores L P, Vaughan J C 2004 Opt. Lett. 29 2503

    [11]

    Albrecht H S, Heist P, Kleinschmidt J, Lap D V 1993 Appl. Phys. B

    [12]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [13]

    Estevadeordal J, Gogineni S, Kimmel R L, Hayes J R 2007 Exp. Therm. Fluid. Sci. 32 98

    [14]

    Brackenridge J B, Gilbert W P 1965 Appl. Opt. 4 819

    [15]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [16]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [17]

    Chung S H, Mazur E 2009 J. Biophoton. 10 557

    [18]

    Frankevich V, Nieckarz R J, Sagulenko P N, Barylyuk K, Zenobi R, Levitsky L I, Agapov A Y, Perlova T Y, Gorshkov M V, Tarasova I A 2012 Rapid Commun. Mass Spectrom. 26 1567

    [19]

    Settles G S 2006 Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media (2st Edn.) (Berlin: Springer-Verlag) p33

    [20]

    Su X, Li J 1999 Information Optics (Beijing: Science Press) p54 (in Chinese) [苏显渝, 李继陶 1999 信息光学 (北京: 科学出版社) 第54页]

    [21]

    Zhang N, Yang J, Zhu X 2012 Chin. J. Laser. 39 0503002 (in Chinese) [张楠, 杨景辉, 朱晓农 2012 中国激光 39 0503002]

    [22]

    Vidal F, Johnston T W, Laville S, Barthélemy O, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573

    [23]

    Perez D, Lewis L J 2002 Phys. Rev. Lett. 89 255504

    [24]

    Hu H, Wang X, Zhai H 2011 Opt. Lett. 36 124

    [25]

    Sedov L I 1993 Similarity and dimensional methods in mechanics (Boca Raton: CRC Press) p261-296

    [26]

    Strohbehn J W, Clifford S F 1978 Laser beam propagation in the atmosphere (New York: Springer-Verlag) p10

    [27]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [28]

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) p173 (in Chinese) p173 [郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第173页]

    [29]

    Sirven J B, Bousquet B, Canioni L, Sarger L 2004 Spectrochim. Acta Parb B 59 1033

    [30]

    Callies G, Berger P, Hugel H 1995 J. Phys. D: Appl. Phys. 28 794

  • [1]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [2]

    Rodriguez G, Valenzuela A R, Yellampalle B, Schmitt M J, Kim K Y 2008 J. Opt. Soc. Am. B 25 1988

    [3]

    Yuan C J, Zhai H C, Wang X L, Wu L 2007 Acta Phys. Sin. 56 218 (in Chinese) [袁操今, 翟宏琛, 王晓雷, 吴兰 2007 物理学报 56 218]

    [4]

    Chigarev N, Tournat V, Gusev V 2012 Appl. Phys. Lett. 100 144102

    [5]

    Hu H F, Wang X L, Li Z L, Zhang N, Zhai H C 2009 Acta Phys. Sin. 58 7662 (in Chinese) [胡浩峰, 王晓雷, 李智磊, 张楠, 翟宏琛 2009 物理学报 58 7662]

    [6]

    Berry S A, Gates J C, Brocklesby W S 2011 Appl. Phys. Lett. 99 141107

    [7]

    Xu X F, Cai L Z, Wang Y R, Li D L 2010 Chin. Phys. Lett. 27 024215

    [8]

    Börner M, Fils J, Frank A, Blažević A, Hessling T, Pelka A, Schaumann G, Schökel A, Schumacher D, Basko M M, Maruhn J, Tauschwitz A, Roth M 2012 Rev. Sci. Inst. 83 043501

    [9]

    Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla F J 2011 Opt. Lett. 36 4305

    [10]

    Popescu G, Deflores L P, Vaughan J C 2004 Opt. Lett. 29 2503

    [11]

    Albrecht H S, Heist P, Kleinschmidt J, Lap D V 1993 Appl. Phys. B

    [12]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [13]

    Estevadeordal J, Gogineni S, Kimmel R L, Hayes J R 2007 Exp. Therm. Fluid. Sci. 32 98

    [14]

    Brackenridge J B, Gilbert W P 1965 Appl. Opt. 4 819

    [15]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [16]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [17]

    Chung S H, Mazur E 2009 J. Biophoton. 10 557

    [18]

    Frankevich V, Nieckarz R J, Sagulenko P N, Barylyuk K, Zenobi R, Levitsky L I, Agapov A Y, Perlova T Y, Gorshkov M V, Tarasova I A 2012 Rapid Commun. Mass Spectrom. 26 1567

    [19]

    Settles G S 2006 Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media (2st Edn.) (Berlin: Springer-Verlag) p33

    [20]

    Su X, Li J 1999 Information Optics (Beijing: Science Press) p54 (in Chinese) [苏显渝, 李继陶 1999 信息光学 (北京: 科学出版社) 第54页]

    [21]

    Zhang N, Yang J, Zhu X 2012 Chin. J. Laser. 39 0503002 (in Chinese) [张楠, 杨景辉, 朱晓农 2012 中国激光 39 0503002]

    [22]

    Vidal F, Johnston T W, Laville S, Barthélemy O, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573

    [23]

    Perez D, Lewis L J 2002 Phys. Rev. Lett. 89 255504

    [24]

    Hu H, Wang X, Zhai H 2011 Opt. Lett. 36 124

    [25]

    Sedov L I 1993 Similarity and dimensional methods in mechanics (Boca Raton: CRC Press) p261-296

    [26]

    Strohbehn J W, Clifford S F 1978 Laser beam propagation in the atmosphere (New York: Springer-Verlag) p10

    [27]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [28]

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) p173 (in Chinese) p173 [郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第173页]

    [29]

    Sirven J B, Bousquet B, Canioni L, Sarger L 2004 Spectrochim. Acta Parb B 59 1033

    [30]

    Callies G, Berger P, Hugel H 1995 J. Phys. D: Appl. Phys. 28 794

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1999
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-07
  • 修回日期:  2013-03-26
  • 刊出日期:  2013-07-05

利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化

  • 1. 南开大学现代光学研究所, 光学信息技术科学教育部重点实验室, 天津 300071;
  • 2. 中国人民武装警察部队学院基础部, 廊坊 065000
    基金项目: 

    国家自然科学基金(批准号: 11004111和61137001)

    天津市自然科学基金(批准号: 10JCZDGX35100)

    高等学校博士学科点专项科研基金(批准号: 20100031120034)和中央高校基本科研业务费专项资金资助的课题.

摘要: 本文提出了一种基于纹影成像装置的新型相位检测方法, 并使用该方法对飞秒激光烧蚀铝靶产生的喷射物的超快相位演化过程进行了实验研究. 与传统的纹影法不同, 本文的相位检测方法使用相干光作为成像照明光, 利用未透过样品的背景光作为参考光, 借助透过样品后在纹影装置刀口处衍射的照明光与背景照明光的干涉, 检测样品的相位; 其最显著的优点是能够清晰反映被测样品mπ或2mπ (m为整数) 的相位改变. 利用该方法, 结合抽运-探测技术, 研究了激光流量为5.4 J/cm2的50 fs脉冲激光烧蚀铝靶产生的喷射物的超快相位演化. 实验发现, 烧蚀过程中形成的喷射物可分为三个相位不同的区域, 分别对应等离子体态的喷射物、后续的垂直靶面喷射的物质和冲击波. 其中, 等离子体态的喷射物在0–9.0 ns的时间延迟内, 由于膨胀和电子复合作用, 相位变化超过π; 而后续的垂直靶面的喷射物在此时间内的相位变化没有超过π.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回