搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li-N-H储氢体系热力学性质的第一性原理研究

赵玉娜 高涛 吕金钟 马俊刚

Li-N-H储氢体系热力学性质的第一性原理研究

赵玉娜, 高涛, 吕金钟, 马俊刚
PDF
导出引用
  • 基于密度泛函理论的第一性原理方法, 系统地研究了Li-N-H储氢过程中各个化合物的晶胞参数、生成焓和化学反应焓. 结果发现优化后的晶格参数与先前的理论和实验研究符合得很好. 通过计算Li3N, LiH, LiNH2和Li2NH在298 K的生成焓分别为-168.7, -81.0, -173.0和-190.8 kJ/mol, 进而计算得到整个储氢反应过程在T=298 K时反应焓为78.5 kJ/mol H2, 这和他人计算得到T=300 K的结果75.67 kJ/mol H2非常接近. 最后, 给出了储氢两步反应过程分别在T=298 K时的反应焓, 这些结果都与实验和他人理论计算得到的数据符合较好.
    [1]

    Ichikawa T, Isobe S, Hanada N, Fujii H 2004 J. Alloys Compd. 365 271

    [2]

    Meisner G P, Pinkerton F E, Meyer M S, Balogh M P, Kundrat M D 2005 J. Alloys Compd. 24 404

    [3]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2003 J. Phys. Chem. B 107 10967

    [4]

    Noritake T, Nozaki H, Aoki M, Towata S, Kitahara G, Nakamori Y, Orimo S 2005 J. Alloys. Compd. 393 264

    [5]

    Ohoyama K, Nakamori Y, Orimo S, Yamada K 2005 J. Phys. Soc. Jpn. 74 483

    [6]

    Balogh M P, Jones C Y, Herbst J F, Hector Jr L G, Kundrat M 2006 J. Alloys Compd. 420 326

    [7]

    Kohn W, Sham L J 1965 Phy. Rev. 137 A 1697

    [8]

    Li Q, Huang D H, Cao Q L, Wang F H 2013 Chin. Phys. B 22 037101

    [9]

    Chen X, Chen W B, Shang X F, Tao X M, Dai J H, Tan M Q 2007 Acta. Phys. Chim. Sin. 23 861 (in Chinese) [陈鑫, 陈文斌, 尚学府, 陶向明, 戴建辉, 谭明秋 2007 物理化学学报 23 861]

    [10]

    Chen Z J, Xiao H Y, Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) [陈中钧, 肖海燕, 祖小涛 2005 物理学报 54 5301]

    [11]

    The ABINIT code is a common project of the Université Catholique de Louvain, and other contributors (URL http: //www.abinit.org)

    [12]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [13]

    Herbst J F, Hector L G 2005 Phys. Rev. B 72 125120

    [14]

    Miwa K, Ohba N, Towata S 2006 Phys. Rev. B 74 075110

    [15]

    Siegel Donald J, Wolverton C, Ozolinš V 2007 Phys. Rev. B 75 014101

    [16]

    David R 1986 CRC Handbook of Chemistry and Physics (Vol. 67) (Boca Raton: CRC Press) pF-159

    [17]

    Villars P, Calvert L D 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (2nd Ed.) (Metals Park, OH: American Society of Metals)

    [18]

    Smith D K, Leider H R 1968 J. Appl. Crystallogr. 1 246.

    [19]

    Rabenau A, Schulz H 1976 J. Less-Common Met. 50 155

    [20]

    Jacobs Von H, Juza R 1972 Z. Anorg. Allg. Chem. 391 271

    [21]

    Nagib M, Jacobs H 1973 Atomkernenergie 21 275

    [22]

    Magyari-Köpe B, Ozolinš V, Wolverton C 2006 Phys. Rev. B 73 220101(R)

    [23]

    Miwa K, Ohba N, Towata S I, Nakimori Y, Orimo S I 2005 Phys. Rev. B 71 195109

    [24]

    Hino S, Ichikawa T, Ogita N, Udagawa M, Kojima Y 2009 J. Appl. Phys. 105 023527

    [25]

    Hino S, Ichikawa T, Koijma Y 2010 J. Chem. Thermodynamics 42 140

    [26]

    Barin I 1995 Thermochemical Data of Pure Substances (3rd Ed.) (New York: VCH)

    [27]

    Song Y, Guo Z X 2006 Phys. Rev. B 74 195120

    [28]

    Ruff O, Goerges H 1910 Chem. Ber. 44 502

    [29]

    Chase Jr M W 1998 NIST-JANAF Themo-chemical Tables (4th Ed.) (J. Phys. Chem. Ref. Data, Monograph, Vol.9)

    [30]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 302

    [31]

    Wang Q, Chen Y G, Zheng X, Niu G, Wu C L, Tao M D 2009 Physica B 404 3431

    [32]

    Akbarzadeh A R, Ozolinš V, Wolverton C 2007 Adv. Mater. 19 3233

    [33]

    Kojima Y, Kawai Y 2005 J. Alloys Compd. 395 236

    [34]

    Yu D L, Chen Y H, Cao Y J, Zhang C R 2010 Acta Phys. Sin. 59 1991 (in Chinese) [于大龙, 陈玉红, 曹一杰, 张材荣 2010 物理学报 59 1991]

  • [1]

    Ichikawa T, Isobe S, Hanada N, Fujii H 2004 J. Alloys Compd. 365 271

    [2]

    Meisner G P, Pinkerton F E, Meyer M S, Balogh M P, Kundrat M D 2005 J. Alloys Compd. 24 404

    [3]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2003 J. Phys. Chem. B 107 10967

    [4]

    Noritake T, Nozaki H, Aoki M, Towata S, Kitahara G, Nakamori Y, Orimo S 2005 J. Alloys. Compd. 393 264

    [5]

    Ohoyama K, Nakamori Y, Orimo S, Yamada K 2005 J. Phys. Soc. Jpn. 74 483

    [6]

    Balogh M P, Jones C Y, Herbst J F, Hector Jr L G, Kundrat M 2006 J. Alloys Compd. 420 326

    [7]

    Kohn W, Sham L J 1965 Phy. Rev. 137 A 1697

    [8]

    Li Q, Huang D H, Cao Q L, Wang F H 2013 Chin. Phys. B 22 037101

    [9]

    Chen X, Chen W B, Shang X F, Tao X M, Dai J H, Tan M Q 2007 Acta. Phys. Chim. Sin. 23 861 (in Chinese) [陈鑫, 陈文斌, 尚学府, 陶向明, 戴建辉, 谭明秋 2007 物理化学学报 23 861]

    [10]

    Chen Z J, Xiao H Y, Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) [陈中钧, 肖海燕, 祖小涛 2005 物理学报 54 5301]

    [11]

    The ABINIT code is a common project of the Université Catholique de Louvain, and other contributors (URL http: //www.abinit.org)

    [12]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [13]

    Herbst J F, Hector L G 2005 Phys. Rev. B 72 125120

    [14]

    Miwa K, Ohba N, Towata S 2006 Phys. Rev. B 74 075110

    [15]

    Siegel Donald J, Wolverton C, Ozolinš V 2007 Phys. Rev. B 75 014101

    [16]

    David R 1986 CRC Handbook of Chemistry and Physics (Vol. 67) (Boca Raton: CRC Press) pF-159

    [17]

    Villars P, Calvert L D 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (2nd Ed.) (Metals Park, OH: American Society of Metals)

    [18]

    Smith D K, Leider H R 1968 J. Appl. Crystallogr. 1 246.

    [19]

    Rabenau A, Schulz H 1976 J. Less-Common Met. 50 155

    [20]

    Jacobs Von H, Juza R 1972 Z. Anorg. Allg. Chem. 391 271

    [21]

    Nagib M, Jacobs H 1973 Atomkernenergie 21 275

    [22]

    Magyari-Köpe B, Ozolinš V, Wolverton C 2006 Phys. Rev. B 73 220101(R)

    [23]

    Miwa K, Ohba N, Towata S I, Nakimori Y, Orimo S I 2005 Phys. Rev. B 71 195109

    [24]

    Hino S, Ichikawa T, Ogita N, Udagawa M, Kojima Y 2009 J. Appl. Phys. 105 023527

    [25]

    Hino S, Ichikawa T, Koijma Y 2010 J. Chem. Thermodynamics 42 140

    [26]

    Barin I 1995 Thermochemical Data of Pure Substances (3rd Ed.) (New York: VCH)

    [27]

    Song Y, Guo Z X 2006 Phys. Rev. B 74 195120

    [28]

    Ruff O, Goerges H 1910 Chem. Ber. 44 502

    [29]

    Chase Jr M W 1998 NIST-JANAF Themo-chemical Tables (4th Ed.) (J. Phys. Chem. Ref. Data, Monograph, Vol.9)

    [30]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 302

    [31]

    Wang Q, Chen Y G, Zheng X, Niu G, Wu C L, Tao M D 2009 Physica B 404 3431

    [32]

    Akbarzadeh A R, Ozolinš V, Wolverton C 2007 Adv. Mater. 19 3233

    [33]

    Kojima Y, Kawai Y 2005 J. Alloys Compd. 395 236

    [34]

    Yu D L, Chen Y H, Cao Y J, Zhang C R 2010 Acta Phys. Sin. 59 1991 (in Chinese) [于大龙, 陈玉红, 曹一杰, 张材荣 2010 物理学报 59 1991]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1985
  • PDF下载量:  906
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-22
  • 修回日期:  2013-04-03
  • 刊出日期:  2013-07-05

Li-N-H储氢体系热力学性质的第一性原理研究

  • 1. 北京交通大学海滨学院, 黄骅 061100;
  • 2. 四川大学原子与分子物理研究所, 成都 610064

摘要: 基于密度泛函理论的第一性原理方法, 系统地研究了Li-N-H储氢过程中各个化合物的晶胞参数、生成焓和化学反应焓. 结果发现优化后的晶格参数与先前的理论和实验研究符合得很好. 通过计算Li3N, LiH, LiNH2和Li2NH在298 K的生成焓分别为-168.7, -81.0, -173.0和-190.8 kJ/mol, 进而计算得到整个储氢反应过程在T=298 K时反应焓为78.5 kJ/mol H2, 这和他人计算得到T=300 K的结果75.67 kJ/mol H2非常接近. 最后, 给出了储氢两步反应过程分别在T=298 K时的反应焓, 这些结果都与实验和他人理论计算得到的数据符合较好.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回