搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯化氢共振多光子电离光谱:F1Δ2态的光谱微扰分析

龙精明 王华胜

氯化氢共振多光子电离光谱:F1Δ2态的光谱微扰分析

龙精明, 王华胜
PDF
导出引用
  • 通过共振多光子电离-飞行时间法, 记录了氯化氢分子在84800-85700 cm-1范围内, F1Δ2 (v’=1) 里德堡态以及V1∑+ (v’=13, 14) 离子对态的电离产物H+, 35Cl+, H35Cl+ 及其同位素的光谱数据. 由于受离子对态V1∑+ 的作用, F1Δ2 (v’=1)态呈现出明显的近共振相互作用特性. 为了分析F1Δ2与V1∑+态之间存在的光谱微扰, 基于光解离电离通道的分析, 并针对F1Δ2 (v’=1)态离子信号比的变化, 将离子信号二能级作用模型优化到三能级的作用模型, 计算得到了微扰强度值为0.6 cm-1, 预解离系数γ为0.025. 此外, 对于F1Δ2 (v’=1) 与V1∑+ (v’=13, 14)态的三个振动能级的光谱峰位置, 采用光谱解微扰法拟合, 同样得到了类似的微扰强度和去微扰后的各光谱参数. 研究表明, 激发至F1Δ2 (v’=1)态得到的H+, Cl+ 离子主要是该态通过与离子对态耦合作用而产生, 而F1Δ2 (v’=1) 态光谱位置偏移不仅受离子对态而且还受其他里德堡态作用的影响. 同时, 非零γ 值证实了F1Δ2态预解离的存在.
    • 基金项目: 冰岛自然科学基金(批准号: 090046023)和冰岛大学研究基金资助的课题.
    [1]

    Price W C 1938 Proc. Roy. Soc. Ser. A 167 216

    [2]

    Ginter D S, Ginter M L 1981 J. Mol. Spectrosc. 90 177

    [3]

    Tilford S G, Ginter M L 1971 J. Mol. Spectrosc. 40 568

    [4]

    Nee J B, Suto M, Lee L C 1986 J. Chem. Phys. 85 719

    [5]

    Green D S, Wallace S C 1992 J. Chem. Phys. 96 5857

    [6]

    Green D S, Bickel G A, Wallace S C 1991 J. Mol. Spectrosc. 150 388

    [7]

    Green D S, Bickel G A, Wallace S C 1991 J. Mol. Spectrosc. 150 354

    [8]

    Green D S, Bickel G A, Wallace S C 1991 J. Mol. Spectrosc. 150 303

    [9]

    Wang H S, Kvaran Á 2007 Acta Phys. Chim. Sin. 23 1543 (in Chinese) [王华胜, Kvaran Ágúst 2007 物理化学学报 23 1543]

    [10]

    Wang K, McKay V 1991 J. Chem. Phys. 95 8718

    [11]

    Maul C, Chichinin A I, Gericke K H 2011 J. Atom Mol. Opt. Phys. 2011 410108

    [12]

    Pitarch-Ruiz J, Merás A S D, Sáchez-Maí J 2008 J. Phys. Chem. A 112 3275

    [13]

    van Dishoeck E F, van Hemert M C, Dalgarno A 1982 J. Chem. Phys. 77 3693

    [14]

    Singleton L, Brint P 1997 J. Chem. Soc. Faraday Trans. 93 21

    [15]

    Li Y, Bludsky O, Hirsch G, Buenker R J 2000 J. Chem. Phys. 112 260

    [16]

    Lefebvre-Brion H, Liebermann H P, Vázquez G J 2011 J. Chem. Phys. 134 204104

    [17]

    Lu G H, Sun W G, Feng H 2004 Acta Phys. Sin. 53 1758 (in Chinese) [鲁光辉, 孙卫国, 冯 灏 2004 物理学报 53 1758]

    [18]

    Long J M, Wang H S, Kvaran A 2013 J. Chem. Phys. 138 044308

    [19]

    Matthísson K, Long J, Wang H, Kvaran Á 2011 J. Chem. Phys. 134 164302

    [20]

    Long J M, Hróðmarsson H R, Wang H S, Kvaran Á 2012 J. Chem. Phys. 136 214315

    [21]

    Long J M, Wang H S, Kvaran Á 2012 J. Mol. Spectrosc. 282 20

    [22]

    Xie Y J, Reilly P T A, Chilukuri S, Gordon R J 1991 J. Chem. Phys. 95 854

    [23]

    Liyanage R, Reilly P T A, Yang Y A, Gordon R J 1993 Chem. Phys. Lett. 216 544

    [24]

    Alexander M H, Li X, Liyanage R, Gordon R J 1998 Chem. Phys. 231 331

    [25]

    Kvaran Á, Wang H S, Logadóttir Á 2000 J. Chem. Phys. 112 10811

    [26]

    Kvaran Á, Matthiasson K, Wang H S 2009 J. Chem. Phys. 131 044324

    [27]

    Kvaran Á, Wang H S, Matthiasson K, Bodi A, Jonsson E 2008 J. Chem. Phys. 129 164313

    [28]

    Kauczok S, Maul C, Chichinin A I, Gericke K H 2010 J. Chem. Phys. 133 024301

    [29]

    Wang Z, Zhang L M, Wang F, Li J, Yu S Q 2003 Acta Phys. Sin. 52 3027 (in Chinese) [王仲, 张立敏, 王峰, 李江, 俞书勤 2003 物理学报 52 3027]

    [30]

    Romanescu C, Manzhos S, Boldovsky D, Clarke J, Loock H P 2004 J. Chem. Phys. 120 767

    [31]

    Chichinin A I, Maul C, Gericke K H 2006 J. Chem. Phys. 124 224324

    [32]

    Lefebvre-Brion H, Field R W 2004 The Spectra and Dynamics of Diatiomic Molecules (Amsterdam: Elsevier Academic Press)

    [33]

    Liyanage R, Gordon R J, Field R W 1998 J. Chem. Phys. 109 8374

  • [1]

    Price W C 1938 Proc. Roy. Soc. Ser. A 167 216

    [2]

    Ginter D S, Ginter M L 1981 J. Mol. Spectrosc. 90 177

    [3]

    Tilford S G, Ginter M L 1971 J. Mol. Spectrosc. 40 568

    [4]

    Nee J B, Suto M, Lee L C 1986 J. Chem. Phys. 85 719

    [5]

    Green D S, Wallace S C 1992 J. Chem. Phys. 96 5857

    [6]

    Green D S, Bickel G A, Wallace S C 1991 J. Mol. Spectrosc. 150 388

    [7]

    Green D S, Bickel G A, Wallace S C 1991 J. Mol. Spectrosc. 150 354

    [8]

    Green D S, Bickel G A, Wallace S C 1991 J. Mol. Spectrosc. 150 303

    [9]

    Wang H S, Kvaran Á 2007 Acta Phys. Chim. Sin. 23 1543 (in Chinese) [王华胜, Kvaran Ágúst 2007 物理化学学报 23 1543]

    [10]

    Wang K, McKay V 1991 J. Chem. Phys. 95 8718

    [11]

    Maul C, Chichinin A I, Gericke K H 2011 J. Atom Mol. Opt. Phys. 2011 410108

    [12]

    Pitarch-Ruiz J, Merás A S D, Sáchez-Maí J 2008 J. Phys. Chem. A 112 3275

    [13]

    van Dishoeck E F, van Hemert M C, Dalgarno A 1982 J. Chem. Phys. 77 3693

    [14]

    Singleton L, Brint P 1997 J. Chem. Soc. Faraday Trans. 93 21

    [15]

    Li Y, Bludsky O, Hirsch G, Buenker R J 2000 J. Chem. Phys. 112 260

    [16]

    Lefebvre-Brion H, Liebermann H P, Vázquez G J 2011 J. Chem. Phys. 134 204104

    [17]

    Lu G H, Sun W G, Feng H 2004 Acta Phys. Sin. 53 1758 (in Chinese) [鲁光辉, 孙卫国, 冯 灏 2004 物理学报 53 1758]

    [18]

    Long J M, Wang H S, Kvaran A 2013 J. Chem. Phys. 138 044308

    [19]

    Matthísson K, Long J, Wang H, Kvaran Á 2011 J. Chem. Phys. 134 164302

    [20]

    Long J M, Hróðmarsson H R, Wang H S, Kvaran Á 2012 J. Chem. Phys. 136 214315

    [21]

    Long J M, Wang H S, Kvaran Á 2012 J. Mol. Spectrosc. 282 20

    [22]

    Xie Y J, Reilly P T A, Chilukuri S, Gordon R J 1991 J. Chem. Phys. 95 854

    [23]

    Liyanage R, Reilly P T A, Yang Y A, Gordon R J 1993 Chem. Phys. Lett. 216 544

    [24]

    Alexander M H, Li X, Liyanage R, Gordon R J 1998 Chem. Phys. 231 331

    [25]

    Kvaran Á, Wang H S, Logadóttir Á 2000 J. Chem. Phys. 112 10811

    [26]

    Kvaran Á, Matthiasson K, Wang H S 2009 J. Chem. Phys. 131 044324

    [27]

    Kvaran Á, Wang H S, Matthiasson K, Bodi A, Jonsson E 2008 J. Chem. Phys. 129 164313

    [28]

    Kauczok S, Maul C, Chichinin A I, Gericke K H 2010 J. Chem. Phys. 133 024301

    [29]

    Wang Z, Zhang L M, Wang F, Li J, Yu S Q 2003 Acta Phys. Sin. 52 3027 (in Chinese) [王仲, 张立敏, 王峰, 李江, 俞书勤 2003 物理学报 52 3027]

    [30]

    Romanescu C, Manzhos S, Boldovsky D, Clarke J, Loock H P 2004 J. Chem. Phys. 120 767

    [31]

    Chichinin A I, Maul C, Gericke K H 2006 J. Chem. Phys. 124 224324

    [32]

    Lefebvre-Brion H, Field R W 2004 The Spectra and Dynamics of Diatiomic Molecules (Amsterdam: Elsevier Academic Press)

    [33]

    Liyanage R, Gordon R J, Field R W 1998 J. Chem. Phys. 109 8374

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2129
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-15
  • 修回日期:  2013-05-03
  • 刊出日期:  2013-08-05

氯化氢共振多光子电离光谱:F1Δ2态的光谱微扰分析

  • 1. 冰岛大学自然科学研究所, 雷克雅未克 107, 冰岛
    基金项目: 

    冰岛自然科学基金(批准号: 090046023)和冰岛大学研究基金资助的课题.

摘要: 通过共振多光子电离-飞行时间法, 记录了氯化氢分子在84800-85700 cm-1范围内, F1Δ2 (v’=1) 里德堡态以及V1∑+ (v’=13, 14) 离子对态的电离产物H+, 35Cl+, H35Cl+ 及其同位素的光谱数据. 由于受离子对态V1∑+ 的作用, F1Δ2 (v’=1)态呈现出明显的近共振相互作用特性. 为了分析F1Δ2与V1∑+态之间存在的光谱微扰, 基于光解离电离通道的分析, 并针对F1Δ2 (v’=1)态离子信号比的变化, 将离子信号二能级作用模型优化到三能级的作用模型, 计算得到了微扰强度值为0.6 cm-1, 预解离系数γ为0.025. 此外, 对于F1Δ2 (v’=1) 与V1∑+ (v’=13, 14)态的三个振动能级的光谱峰位置, 采用光谱解微扰法拟合, 同样得到了类似的微扰强度和去微扰后的各光谱参数. 研究表明, 激发至F1Δ2 (v’=1)态得到的H+, Cl+ 离子主要是该态通过与离子对态耦合作用而产生, 而F1Δ2 (v’=1) 态光谱位置偏移不仅受离子对态而且还受其他里德堡态作用的影响. 同时, 非零γ 值证实了F1Δ2态预解离的存在.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回