搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间非对称分数阶类Langevin棘齿

周兴旺 林丽烽 马洪 罗懋康

时间非对称分数阶类Langevin棘齿

周兴旺, 林丽烽, 马洪, 罗懋康
PDF
导出引用
  • 本文将细胞内环境假定为分数阶牛顿黏弹性体并建立了单位质量的一维线动分子马达的时间非对称分数阶类郎之万棘齿模型,其中的周期势函数是空间对称的,而用于刻画ATP水解反应引起的环境波动的则是无偏的时间非对称类郎之万噪声. 然后本文将模型转化为离散映射以便进行计算机模拟. 最后本文以Logistic映射所生成的类郎之万噪声为例简单模拟了模型的定向输运行为. 各参数情形下的模拟结果均显示:无需势函数的空间对称破缺,时间非对称的类郎之万噪声已足以引起模型的定向输运. 负向的输运行为应归因于Logistic映射的两个不稳定不动点的非对称分布. 因此,尽管模拟结果同整数阶模型相比并无本质区别,但分数阶模型对于分子马达的噪声整流机理的刻画却无疑更接近实际情况.
    • 基金项目: 国家自然科学基金(批准号:11171238)和福建农林大学青年教师基金(批准号:2011XJJ23)资助的课题.
    [1]

    Reimann P 2002 Physics Reports 361 57

    [2]

    Chialvo D R, Dykman M I, Millonas M M 1997 Phys. Rev. Lett. 78 1605

    [3]

    Hänggi P, Bartussek R, Talkner P 1996 Europhys. Lett. 35 315

    [4]

    Zheng Z G, Li X W 2001 Commun. Theor. Phys. 36 151

    [5]

    Schreier M, Reimann P, Hänggi P 1998 Europhys. Lett. 44 146

    [6]

    Hänggi P, Marchesoni F 2009 Reviews of Modern Physics 81 387

    [7]

    Hondou T 1994 J. Phys. Soc. Japan 63 2014

    [8]

    Hondou T, Sawada Y 1995 Phys. Rev. Lett. 75 3269

    [9]

    Hondou T, Sawada Y 1996 Phys. Rev. E 54 3149

    [10]

    Beck C, Reopstorff G 1987 Physica A 45 1

    [11]

    Beck C 1991 Nonlinear 4 1131

    [12]

    Chew L Y, Ting C 2002 Physica A 307 275

    [13]

    Chew L Y, Ting C 2004 Phys. Rev. E 69 031103

    [14]

    Chew L Y, Ting C, Lai C H 2005 Phys. Rev. E 72 036222

    [15]

    Chew L Y 2012 Phys. Rev. E 85 016212

    [16]

    Luby-Phelps K 2000 Review of Cytology 192 189

    [17]

    [美国科学院研究理事会编, 王菊芳译 2013 二十一世纪新生物学(北京: 科学出版社)]

    [18]

    Ellis R J 2001 Trends in Biochemical Sciences 26 597

    [19]

    Ellis R J 2001 Current Opinion in Structural Biology 11 114

    [20]

    Tarasov V E 2010 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles Fields and Media (Beijing: Higher Education Press)p442

    [21]

    Baiwen S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese)[白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501] (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [22]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [23]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese)[王飞, 邓翠, 屠浙 2013 物理学报 62 040501]

    [24]

    [包景东 2012 反常统计动力学导论(北京: 科学出版社)第183页]

    [25]

    Mainardi F 2010 Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (London: Imperial College Press) p57

    [26]

    Lasota A, Mackey M 1994 Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (New York: Springer-Verlag) p8

    [27]

    [包景东 2009 经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第13页]

  • [1]

    Reimann P 2002 Physics Reports 361 57

    [2]

    Chialvo D R, Dykman M I, Millonas M M 1997 Phys. Rev. Lett. 78 1605

    [3]

    Hänggi P, Bartussek R, Talkner P 1996 Europhys. Lett. 35 315

    [4]

    Zheng Z G, Li X W 2001 Commun. Theor. Phys. 36 151

    [5]

    Schreier M, Reimann P, Hänggi P 1998 Europhys. Lett. 44 146

    [6]

    Hänggi P, Marchesoni F 2009 Reviews of Modern Physics 81 387

    [7]

    Hondou T 1994 J. Phys. Soc. Japan 63 2014

    [8]

    Hondou T, Sawada Y 1995 Phys. Rev. Lett. 75 3269

    [9]

    Hondou T, Sawada Y 1996 Phys. Rev. E 54 3149

    [10]

    Beck C, Reopstorff G 1987 Physica A 45 1

    [11]

    Beck C 1991 Nonlinear 4 1131

    [12]

    Chew L Y, Ting C 2002 Physica A 307 275

    [13]

    Chew L Y, Ting C 2004 Phys. Rev. E 69 031103

    [14]

    Chew L Y, Ting C, Lai C H 2005 Phys. Rev. E 72 036222

    [15]

    Chew L Y 2012 Phys. Rev. E 85 016212

    [16]

    Luby-Phelps K 2000 Review of Cytology 192 189

    [17]

    [美国科学院研究理事会编, 王菊芳译 2013 二十一世纪新生物学(北京: 科学出版社)]

    [18]

    Ellis R J 2001 Trends in Biochemical Sciences 26 597

    [19]

    Ellis R J 2001 Current Opinion in Structural Biology 11 114

    [20]

    Tarasov V E 2010 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles Fields and Media (Beijing: Higher Education Press)p442

    [21]

    Baiwen S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese)[白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501] (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [22]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [23]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese)[王飞, 邓翠, 屠浙 2013 物理学报 62 040501]

    [24]

    [包景东 2012 反常统计动力学导论(北京: 科学出版社)第183页]

    [25]

    Mainardi F 2010 Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (London: Imperial College Press) p57

    [26]

    Lasota A, Mackey M 1994 Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (New York: Springer-Verlag) p8

    [27]

    [包景东 2009 经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第13页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1759
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-27
  • 修回日期:  2014-02-19
  • 刊出日期:  2014-06-05

时间非对称分数阶类Langevin棘齿

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 福建农林大学计算机与信息学院, 福州 350002
    基金项目: 

    国家自然科学基金(批准号:11171238)和福建农林大学青年教师基金(批准号:2011XJJ23)资助的课题.

摘要: 本文将细胞内环境假定为分数阶牛顿黏弹性体并建立了单位质量的一维线动分子马达的时间非对称分数阶类郎之万棘齿模型,其中的周期势函数是空间对称的,而用于刻画ATP水解反应引起的环境波动的则是无偏的时间非对称类郎之万噪声. 然后本文将模型转化为离散映射以便进行计算机模拟. 最后本文以Logistic映射所生成的类郎之万噪声为例简单模拟了模型的定向输运行为. 各参数情形下的模拟结果均显示:无需势函数的空间对称破缺,时间非对称的类郎之万噪声已足以引起模型的定向输运. 负向的输运行为应归因于Logistic映射的两个不稳定不动点的非对称分布. 因此,尽管模拟结果同整数阶模型相比并无本质区别,但分数阶模型对于分子马达的噪声整流机理的刻画却无疑更接近实际情况.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回